摘要
针对非线性非高斯时间序列,提出观测噪声服从隐马尔可夫模型(HMM)的径向基函数(RBF)神经网络(RBF-HMM)预测模型,其特点在于模型输入包含误差反馈项、RBF网络隐含层节点数的可变性和观测噪声的隐马尔可夫性;并采用序列蒙特卡罗(SMC)方法实现基于RBF-HMM模型的时间序列在线预测.最后采用太阳黑子数平滑月均值数据和CRU国际钢材价格指数月数据进行实证研究,结果表明该模型的有效性.
For the nonlinear and non-Gaussian time series, a novel predictive model--the RBF-HMM model is proposed based on the radial basis function(RBF) neural network with measurement noise being assumed to be of a hidden Markov model(HMM). The characteristics of this model include: 1) the predictive errors of RBF neural network are associated with the input of RBF-HMM model; 2) the number of hidden neurons varies with time; 3) the measurement noise is assumed to be HMM distributed. Sequential Monte Carlo(SMC) method is then applied to the on-line prediction for time series in RBF- HMM model. Finally, the smoothed data of the monthly mean sunspot numbers and CRU(the Britain Commodity Research University) steel price index are analyzed. The experimental results indicate that the RBF-HMM model is effective.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2009年第2期151-155,共5页
Control Theory & Applications
基金
国家自然科学基金资助项目(70571037)
国家软科学研究计划资助项目(2006GXQ3B203).
关键词
预测
径向基函数神经网络
隐马尔可夫模型
序列蒙特卡罗方法
prediction
radial basis function neural networks
hidden Markov model
sequential Monte Carlo method