期刊文献+

基于RBF神经网络的非线性时间序列在线预测 被引量:25

On-line prediction of nonlinear time series using RBF neural networks
下载PDF
导出
摘要 针对非线性非高斯时间序列,提出观测噪声服从隐马尔可夫模型(HMM)的径向基函数(RBF)神经网络(RBF-HMM)预测模型,其特点在于模型输入包含误差反馈项、RBF网络隐含层节点数的可变性和观测噪声的隐马尔可夫性;并采用序列蒙特卡罗(SMC)方法实现基于RBF-HMM模型的时间序列在线预测.最后采用太阳黑子数平滑月均值数据和CRU国际钢材价格指数月数据进行实证研究,结果表明该模型的有效性. For the nonlinear and non-Gaussian time series, a novel predictive model--the RBF-HMM model is proposed based on the radial basis function(RBF) neural network with measurement noise being assumed to be of a hidden Markov model(HMM). The characteristics of this model include: 1) the predictive errors of RBF neural network are associated with the input of RBF-HMM model; 2) the number of hidden neurons varies with time; 3) the measurement noise is assumed to be HMM distributed. Sequential Monte Carlo(SMC) method is then applied to the on-line prediction for time series in RBF- HMM model. Finally, the smoothed data of the monthly mean sunspot numbers and CRU(the Britain Commodity Research University) steel price index are analyzed. The experimental results indicate that the RBF-HMM model is effective.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第2期151-155,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(70571037) 国家软科学研究计划资助项目(2006GXQ3B203).
关键词 预测 径向基函数神经网络 隐马尔可夫模型 序列蒙特卡罗方法 prediction radial basis function neural networks hidden Markov model sequential Monte Carlo method
  • 相关文献

参考文献19

  • 1BOX G E P, JENKINS G M, REINSEL G C. Time Series Analysis. Forecasting and Control [M]. 3rd edition. Beijing: Posts & Telecom Press, 2005:19 - 180.
  • 2CHEN S, BILLINGS S A. Representation of non-linear systems: the NARMAX model[J]. International Journal of Control, 1989, 49(3): 1013 - 1042.
  • 3HORNIK K, STINCHCOMBE M, WHITE H. Multi-layer feed-forward networks are universal approximators[J]. Neural Networks, 1989, 2(3): 359 - 366.
  • 4张高煜,江水,梁继民,赵恒.采用序贯滤波的红外/雷达机动目标跟踪[J].控制理论与应用,2007,24(5):811-814. 被引量:10
  • 5DE FREITAS N, ANDRIEU C, HOJEN-SORENSEN P, et al. Sequential Monte Carlo methods for neural networks[M]//Sequential Monte Carlo Methods in Practice. New York: Springer-Verlag, 2001.
  • 6XU X, LIB. Adaptive Rao-Blackwellised particle filter and its evaluation for tracking in surveillance[J]. IEEE Transactions on Image Processing, 2007, 16(3): 838 - 849.
  • 7HOLMES C, MALLICK B K. Bayesian radial basis function of variable dimension[J]. Neural Computation, 1998, 10(5): 1217 - 1233.
  • 8POGGIO T, GIROSI F. Networks for approximation and learning[J]. Proceedings of the IEEE, 1990, 78(9): 1481 - 1497.
  • 9RABINER L R. A tutorial on hidden Markov Models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257 - 286.
  • 10LIPORACE L A. Maximum likelihood estimation for multivariate observations of Markov sources[J]. IEEE Transactions on Information Theory, 1982, IT-28(5): 729 - 734.

二级参考文献22

共引文献24

同被引文献206

引证文献25

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部