期刊文献+

Interpolating Rational Splines in Three Dimensional Space

三维空间中的有理样条插值(英文)
下载PDF
导出
摘要 Let a polyhedron in three dimensional space be decomposed into tetrahedral cells by a certain partition. In this paper efforts are made on assigning appropriate nodes along the edges of every tetrahedron and characterizing interpolation data that determine a unique rational function of type (1,1), which is nonsingular in the corresponding tetrahedron. By constructing suitable basis functions and restricting the interpolation data, necessary and sufficient conditions for the existence of rational splines with C 0 as well as C 1 smoothness are formulated respectively. 对三维空间某个多面体区域的四面体剖分,通过在每个四面体胞腔的棱和顶点设置适当的插值结点.本文给出了(1,1)型C0及C1光滑的非奇异有理样条存在的充分必要条件.
作者 檀结庆
出处 《Journal of Mathematical Research and Exposition》 CSCD 1998年第2期181-187,共7页 数学研究与评论(英文版)
关键词 PARTITION INTERPOLATION rational spline. 三维空间 有理样条 插值结点
  • 相关文献

参考文献3

  • 1Wang R H,Appl Numer Math,1993年,12卷,357页
  • 2Wang R H,J Comput Appl Math,1985年,12卷,163页
  • 3Wang R H,数学杂志,1975年,18卷,91页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部