摘要
设En中n维单形Δn的宽度以及内切球半径、n维体积、侧面的n-1维体积、棱长、中线长、外接球半径分别为ω(Δn),r(Δn),V(Δn),V(Fk),ρij,mk,R(Δn),本文证明了存在仅与维数n有关的绝对常数an,bn,cn,dn,en,gn,满足不等式链ω(Δn)≤anr(Δn)≤bnV1n(Δn)≤cn[∏n+1k=1V(Fk)]1n2-1≤dn∏1≤i<j≤n+1ρ2n(n+1)ij≤en(∑1≤i<j≤n+1ρ2ij)12=fn(∑n+1k=1m2k)12≤gnR(Δn),其中所有等号当且仅当单形Δn正则时成立.
Let ω(Δ n) denote the width of non degenerate Δ n in E n and r(Δ n),V(Δ n),V(F k),ρ ij ,m k,R(Δ n) denote the inradius, n volume, (n-1) volume, edge length, mid line length, circumradius of the simplex, respectively. We prove the following:ω(Δ n)≥a nr(Δ n)≤b nV 1n (Δ n)≤c n[∏n+1k=1V(F k)] 1n 2-1 ≤d n∏1≤i<j≤n+1ρ 2n(n+1) ij ≤e n(∑1≤i<j≤n+1ρ 2 ij ) 12 =f n(∑n+1k=1m 2 k) 12 ≤g nR(Δ n),where equalities holds if and only if the simplex is regular.