摘要
设(X,Y)是一随机向量且变量Y的均值存在.假定Y被另一分布G的随机变量t删失,仅能观察到不完全数据(xi,Yi^ti,δi),i=1,2,…n,其中Yi^ti=min(Yi,Ti),δi=I(Yi≤ti)。为了给出回归函数m(x)=E(Y|X)的估计。文中使用了Stute提出的最近邻型回归估计,并给出了该估计的强相合性结果.
Let (X, Y) be an R2 valued vector with E|Y| <∞. {Yi} are censored by random variables {ti} with d.f.G and the available observations are of the form (zi, δi, Xi), 1≤ i≤n, where Zi = Yi ti andδi = I(Yi ≤ ti). To estimate the regression function m(x0) = E(Y|X = x0),we propose a Stute's(1984) type estimator, i.e. the nearest neighbor regression estimator, when the data subject to cellsoring. It is established the strong consistency of the nearest neighbor regression estimator
出处
《应用概率统计》
CSCD
北大核心
1998年第2期191-202,共12页
Chinese Journal of Applied Probability and Statistics
关键词
删失数据
回归函数
强相合性
最近邻估计
Nearest neighbor estimator, regression function,censored data