期刊文献+

一类高阶微分方程亚纯解的增长性

ON THE GROWTH OF MEROMORPHIC SOLUTIONS OF A CLASS OF HIGHER ORDER DIFFERENTIAL EQUATIONS
下载PDF
导出
摘要 研究了高阶微分方程f(k)+Ak-1f(k-1)+…+A1f′+A0f=0亚纯解的增长性,得到了:假设b≠0是复常数,定义指标集Λ={a|a=cab,-1<ca<1},有限集ΛjΛ(j=0,…,k-1),A0=Hbebz+∑a∈Λ0H0aeaz,Aj=∑a∈ΛjHjaaze(j=1,…,k-1),其中Hb和Hja(a∈Λj,j=0,…,k-1)都是级小于1的亚纯函数,且Hb■0,若微分方程有非零亚纯函数解f,则每个非零亚纯解的级为无穷.特别地,如果f的极点重数一致有界,则它的超级为1. The growth of meromorphic solutions of the differential equation f^(k)+Ak-1f^(k-1)+…+A1f′+A0f=0 investigated. Suppose that b ≠0 is a complex constant. Define a setA={a|a=cab,-1〈ca〈1},A(j=0,…,k-1),A0=Hbe^bc+∑∈A0H0de^az,Aj=∑a∈Aj Hja e (j=1,…,k-1), where Hb≠0,and Hja(a∈Aj,j=0,…,k-1) are meromorphic functions with their order of growth smaller than 1. The following result is obtained: σ(f) = w if f(≠0) is the meromorphic solution of the equation above. Furthermore, if the order of pole of the solution f is consistent bounded, then σ2 (f) = 1.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2009年第1期22-25,共4页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10871076)
关键词 微分方程 亚纯函数 增长级 differential equation meromorphie function order of growth
  • 相关文献

参考文献4

二级参考文献19

  • 1陈宗煊,数学年刊.A,1993年,14卷,5期,584页
  • 2Gao Shian,Comment Math Univ Sancti Pauli,1989年,38卷,1期,11页
  • 3何育赞,代数体函数与常微分方程,1988年
  • 4李锐夫,复变函数续论,1988年
  • 5杨乐,值分布论及其新研究,1982年
  • 6Langley J. K., On complex oscillation and a problem of Ozawa [J], Kodai Math. J.,1986, 9:430-439.
  • 7Laine I., Nevanlinna Theory and Complex Differential Equations [M], Berlin: W.de Gruyter, 1993.
  • 8Ozawa M., On a solution of w^11 + e^-zw^1 + (az + b)w = 0 [J], Kodai Math. J., 1980,3:295-309.
  • 9Valiron G., Lectures on the General Theory of Integral Functions [M], New York:Chelsea, 1949.
  • 10Hayman W., The local growth of power series: a survey of the Wiman-Valiron method[J], Canad. Math. Bull., 1974, 17:317-358.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部