摘要
研究了高阶微分方程f(k)+Ak-1f(k-1)+…+A1f′+A0f=0亚纯解的增长性,得到了:假设b≠0是复常数,定义指标集Λ={a|a=cab,-1<ca<1},有限集ΛjΛ(j=0,…,k-1),A0=Hbebz+∑a∈Λ0H0aeaz,Aj=∑a∈ΛjHjaaze(j=1,…,k-1),其中Hb和Hja(a∈Λj,j=0,…,k-1)都是级小于1的亚纯函数,且Hb■0,若微分方程有非零亚纯函数解f,则每个非零亚纯解的级为无穷.特别地,如果f的极点重数一致有界,则它的超级为1.
The growth of meromorphic solutions of the differential equation f^(k)+Ak-1f^(k-1)+…+A1f′+A0f=0 investigated. Suppose that b ≠0 is a complex constant. Define a setA={a|a=cab,-1〈ca〈1},A(j=0,…,k-1),A0=Hbe^bc+∑∈A0H0de^az,Aj=∑a∈Aj Hja e (j=1,…,k-1), where Hb≠0,and Hja(a∈Aj,j=0,…,k-1) are meromorphic functions with their order of growth smaller than 1. The following result is obtained: σ(f) = w if f(≠0) is the meromorphic solution of the equation above. Furthermore, if the order of pole of the solution f is consistent bounded, then σ2 (f) = 1.
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2009年第1期22-25,共4页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10871076)
关键词
微分方程
亚纯函数
增长级
differential equation
meromorphie function
order of growth