摘要
Asymmetrical halo and dual-material gate structure are used in the sub-100 nm surrounding-gate metal oxidesemiconductor field effect transistor (MOSFET) to improve the performance. Using three-region parabolic potential distribution and universal boundary condition, analytical surface potential and threshold voltage models of the novel MOSFET are developed based on the solution of Poisson's equation. The performance of the MOS- FET is examined by the analytical models and the 3D numerical device simulator Davinci. It is shown that the novel MOSFET can suppress short channel effect and improve carrier transport efficiency. The derived analytical models agree well with Davinci.
Asymmetrical halo and dual-material gate structure are used in the sub-100 nm surrounding-gate metal oxidesemiconductor field effect transistor (MOSFET) to improve the performance. Using three-region parabolic potential distribution and universal boundary condition, analytical surface potential and threshold voltage models of the novel MOSFET are developed based on the solution of Poisson's equation. The performance of the MOS- FET is examined by the analytical models and the 3D numerical device simulator Davinci. It is shown that the novel MOSFET can suppress short channel effect and improve carrier transport efficiency. The derived analytical models agree well with Davinci.
基金
Supported by the National Natural Science Foundation of China under Grant No 10771168, the National Basic Research Programme of China under Grant No 2005CB321701, and the Natural Science Foundation of Shaanxi Province under Grant No SJ08-ZT13.