摘要
提出基于数据挖掘的入侵检测系统模型、改进的FP-Growth的关联分析算法和基于分箱统计的FCM网络入侵检测技术。系统实验结果表明,所开发的网络入侵检测系统可以稳定地工作在以太网络环境下,能够及时发现入侵行为,有效地解决了数据挖掘速度问题,增强了入侵检测系统的检测能力,具备了良好的网络入侵检测性能。
Data mining is applied to intrusion detection system, which puts forward a system model based on data mining, improving the FP-Growth algorithm based on associative analysis, and refining the technology of FCM network intrusion detection based on statistical binning. The experimental result shows that the network intrusion detection developed by this paper can work very stably under the Ethernet, find intrusion activities in time,solve the problem of data mining speed effectively, enhance the detective ability of intrusion detection, and possess a favorable performance of intrusion detection.
出处
《计算机科学》
CSCD
北大核心
2009年第3期103-105,共3页
Computer Science
基金
江苏省产业技术与开发基金
苏发改[2006]1106号资助
关键词
入侵检测系统
分布式
数据挖掘
Intrusion detection system, Distribution, Data mining