期刊文献+

数据流挖掘技术及其在仿真中的应用 被引量:2

Data Streams Mining Techniques and its Application in Simulation System
下载PDF
导出
摘要 随着仿真系统复杂程度的增加和规模的增大,仿真时间越来越长,仿真所产生的数据量越来越大,使得仿真数据具有数据流的特性,因此可以采用数据流挖掘技术处理仿真数据。综述了数据流和数据流挖掘技术的主要特点;提出了基于数据流挖掘技术的仿真应用框架;设计了通用数据流挖掘成员,以便能够快速将数据流挖掘算法集成到基于HLA体系结构的仿真系统中,并以导弹突防仿真系统为例介绍了所设计的通用数据流关联规则挖掘成员。 With increasing of complexity and augmenting of scale of simulation system, the simulation time becomes much longer and the simulation data becomes much huger. These make the simulation data has the characters of data streams, so that the simulation data can be processed by data streams mining techniques. We summarized the characters of data streams and data streams mining techniques, and presented simulation application framework based on data streams mining techniques, and designed general data-streams-mining federate to make it easy to integrate the various data streams mining algorithms in HLA architecture-based simulation system quickly, and introduce our general federate for mining association rule in data streams with the example of Missile-Breakthrough simulation system.
出处 《计算机科学》 CSCD 北大核心 2009年第3期116-118,133,共4页 Computer Science
基金 国家自然科学基金资助项目(60573057,60704038)资助
关键词 数据流挖掘 仿真 通用数据流挖掘成员 关联规则 Data streams mining, Simulation, General data-streams-mining federate, Association rule
  • 相关文献

参考文献10

  • 1鞠儒生,乔海泉,黄柯棣.基于数据挖掘的HLA仿真系统测试与评估[J].系统工程与电子技术,2006,28(10):1599-1602. 被引量:6
  • 2张文明,薛青.粗糙集方法在作战仿真数据挖掘中的应用[J].系统仿真学报,2006,18(z2):179-181. 被引量:7
  • 3Morbitzer C, Strachan P, Simpson C. Application of Data Mining Techniques for Building Simulation Performance Prediction Analysis [C]//Proc. of Eighth IBPSA. Eindhoven, Nehterlands, August 2003 : 11-14
  • 4Liu Y, Liao W K, et al. On-Line Processing Model for Data Mining in Large Scientific Simulations [C]//Proc. of 7th Work-hop on Mining Scientific and Engineering Datasets in Conjunction with SDM. Lake Buena Vista, Florida, USA, 2004 : 31-38
  • 5Bachinsky S, Tarbox G, Powell E. Data Collection in an HLA Environment [C]//97S-SIW-059. 1997
  • 6Abdulla G, Critchlow T. Simulation Data as Data Streams [C]. ACM SIGMOD Record, 2004, 33 (1): 89-94
  • 7Gaber M, Zaslavsky A, et al. Mining data streams : A Review [C]. ACM SIGMOD Record, 2005,34(2) : 18-26
  • 8陈彬,张国强,黄柯棣.一种基于HLA的通用仿真数据收集方法[J].计算机仿真,2006,23(5):127-130. 被引量:9
  • 9Chi Y,Wang H, Yu P S, et al. Moment: maintaining closed frequent itemsets over a stream sliding window [C] //Proc, of ICDM'04. Brighton, 2004 : 59-66
  • 10Ao F J,Du J,Huang K D, et al. An Efficient Algorithm for Mining Closed Frequent Itemsets in Data Streams//Proc. of CIT' 08. Sydney, Australia,July 2008

二级参考文献10

共引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部