期刊文献+

一种面向非规则非致密空间分布数据的聚类方法 被引量:2

Clustering Method for Irregular and Uncompact Data
下载PDF
导出
摘要 针对目前很少关注非致密非规则数据聚类的情况,利用蚁群算法具有的组合优化方面的优势,引入近邻函数准则,提出了基于蚁群算法和近邻函数准则的聚类算法,来求解非规则非致密数据聚类问题。实验表明,对于非规则非致密分布数据的聚类问题,该聚类算法可根据连接关系合理地进行聚类,相比K均值算法等其他采用样本距离作为分类指标的聚类方法,可有效降低错聚率,一定程度上较好地解决了这类问题。 Taking advantage of ant colony algorithm's superiority on combinatorial optimization problems, a new clustering algorithm based on ant colony algorithm and neighbor function criterion was presented for uncompact and irregu lar data. Result shows that this new clustering algorithm can obtain better clustering results than K-means clustering algorithm and can commendably solve the problem about the uncompact and irregular distribution to a certain extent.
出处 《计算机科学》 CSCD 北大核心 2009年第3期167-169,共3页 Computer Science
基金 国家自然科学基金(60506055) 重庆市教委项目(KJ070509)资助
关键词 蚁群算法 近邻函数准则 聚类分析 K均值聚类 Ant colony algorithm,Neighbor function criterion,Clustering analysis,K-means clustering
  • 相关文献

参考文献7

  • 1Berkhin P. Survey of clustering data mining techniques [ R] . Technical report. Aeeure Software, San Jose, CA, 2002
  • 2陈传波,罗增琦.一种基于蚁群聚类的快速算法[J].计算机工程,2007,33(6):206-207. 被引量:7
  • 3王宝文,阎俊梅,刘文远,石岩.基于遗传算法的高维数据模糊聚类[J].计算机工程与应用,2007,43(16):191-192. 被引量:2
  • 4Azzage H, Guinot C,Venturini G. How to use ants for hierarchical clustering[C]//Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence. Brussels, Belgium, LNCS 3172. 2004:350-357
  • 5Kantardzic M.数据挖掘-概念、模型、方法和算法[M].北京:清华大学出版社,2003.
  • 6Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, 1996,26 ( 1 ) : 29-41
  • 7边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..

二级参考文献10

  • 1JiaweiH MichlineK.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2Zhang Yuanquan,Rueda LA geometric framework to visualize fuzzyclustered data[C]//IEEE.Proceedings of the XXV International Conference of the Chilean Computer Science Society,2005.
  • 3Hathaway R J,Bezdek J C.fuzzy c-means clustering of incomplete data[J].IEEE Trans syst,2001,31:735-744.
  • 4Aggarwal C,Yu P.Finding generalized projected clusters in dimensional spaces[C]//ACM SIGMOD Conference,2000.
  • 5Tsai Cheng-fa,Tsai Chun-wei,Chen Chi-ping.A novel multiple searching genetic algorithm for multimedia multicast routing[C]//IEEE Congress on Evolutionary Computation,2002:70-65.
  • 6Bonabeau E,Dorigo M,Theraulaz G.Swarm Intelligence:From Natural to Artificial Systems[M].New York:Oxford University Press,1999.
  • 7Lumer E,Faieta B.Diversity and Aptation in Populations of Clustering Ants[C]//Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior:From Animal to Animates 3.1994:501-508.
  • 8Wu Bin,Shi Zhongzhi.A Clustering Algorithm Based on Swarm Intelligence,Info.-tech.and Info.-net[C]//Proceedings of ICII 2001 Beijing International Conferences.2001.
  • 9高新波,谢维信.模糊聚类理论发展及应用的研究进展[J].科学通报,1999,44(21):2241-2251. 被引量:100
  • 10张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:195

共引文献65

同被引文献21

  • 1HAN Jiawei, KAMBER Micheline. Data mining: concepts and techniques [ M]. San Fransisco: Morgan Kaufmann Publishers, 2001 : 383-466.
  • 2WANG Xin, HAMILTON H J. A comparative study of two density-based spatial clustering algorithms for very large datasets [ M ]. Berlin: Springer-Vedag GmbH, 2005, 3501 : 120-132.
  • 3SANDER Joorg, ESTER Martin, KRIEGEL Hanspeter, et al. Density-based clustering in spatial databases:the algorithm GDBSCAN and its applications [ J ]. Springer Netherlands, 1998, 2(2) :169-194.
  • 4CHEN Ling, XU Xiaohua, CI-IEN Yixin, et al. A novel ant clustering algorithm based on cellular automata[ C]// Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology ( IAT' 04 ). Beijing: IEEE Press, 2004: 148-154.
  • 5CHIU Chuiyu, LIN Chiahao. Cluster analysis based on artificial immune system and ant algorithm [ C ]//Third International Conference on Natural Computation (ICNC 2007). Haikou: IEEE Press, 2007, 3:647-650.
  • 6PENG Yuqing, HOU Xiangdan, LIU Shang. The kmeans clustering algorithm based on density and ant colony [ C ]//Proceedings of the 2003 International Conference on Neural Networks & Signal Processing. Nanjing: IEEE Press, 2003: 457-460.
  • 7HANDL J, KNOWLES J. An evolutionary approach to multi-objective clustering[J ]. IEEE Transactions on Evolutionary Computation, 2OI7, 11 ( 1 ) : 56- 76.
  • 8LABROCHE Nicolas, MONMARCHE Nicolas, VENTURINI Gilles. A new clustering algorithm based on the chemical recognition system of ants [ C ]//Proceedings of the European Conference on Artificial Intelligence. Lyon: IEEE Press, 2002: 345-349.
  • 9YANG Xinbin, SUN Jinggao, HUANG Dao. A new clustering method based on ant colony algorithm [ C ]// Proceedings of the 4th World Congress on Intelligent Control and Automation. Shanghai: IEEE Press, 2002, 3 : 2222-2226.
  • 10AZZAG H, MONMARCHE N, SLIMANE M, et al. Anttree: a new model for clustering with artificial ants [ C ]//Congress on Evolutionary Computation. Canberra, Australia: IEEE Press, 2003, 4: 2642-2647.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部