期刊文献+

基于NW小世界邻居的粒子群多阈值分割算法

Image Multilevel Thresholding Based on PSO with NW Small World Neighborhood
下载PDF
导出
摘要 针对多阈值分割问题,提出了一种新的多阈值分割算法。此算法采用相对类内方差代替传统Otsu算法中的绝对类内方差,改善了传统Otsu对小对象分割不理想的弱点;采用NW小世界模型作为粒子群优化的社会认知拓扑结构,具有较好的全局寻优能力和较快的收敛速度。实验结果显示此算法具有好的性能。 As for image multilevel thresholding, a novel algorithm was proposed. Adopting relative intra-class variance instead of absolute intra-elass variance, the algorithm improved the segmentation result for small objects with Otsu method. Introducing NW small world model into particle swarm optimization, the algorithm gained better optimization performance. Experimental results show that the proposed algorithm was promising and outperformed some existing techniques.
出处 《计算机科学》 CSCD 北大核心 2009年第3期201-204,共4页 Computer Science
基金 国家863计划课题(2007AA01Z423) 重庆市自然科学基金(2007BB2134) 重庆大学研究生科技创新基金(200701Y1A0280214)资助
关键词 NW小世界模型 粒子群优化 多阈值分割 类方差 NW small world model, Particle swarm optimization (PSO), Multilevel thresholding, Class variance
  • 相关文献

参考文献14

  • 1Otsu N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems Man Cybernet, 1979, 9(1):62-66
  • 2Kittler J, Illingworth J. Minimum error thresholding [J]. Pattern Recognition, 1986,19(1) :41-47
  • 3Abutaleb A S. Automatic thresholding of grey-level pictures using two-dimensional entropy [J]. Computer Vision, Graphics and Image Process,1989,47(1) :22-32
  • 4Soon H K. Threshold selection based on cluster analysis [J]. Pattern Recognition Letters, 2004,25 (9):1045-1050
  • 5Huang Qingming, Gao Wen, Cai Wenjian. Thresholding tech - nique with adaptive window selection for uneven lighting image [J]. Pattern Recognition Letters, 2005,26(6) : 801-808
  • 6Hemachander S, Verma A, Arora S, et al. Locally adaptive block thresholding method with continuity constraint [J]. Pattern Recognition Letters,2007,28 (1) : 119-124
  • 7Qiao Yu, Hua Qingmao, Qian Guoyu, et al. Thresholding based on variance and intensity contrast [J]. Pattern Recognition, 2007,40 (2) : 596-608
  • 8Pal N R, Pal S K. Entropic thresholding [J]. Signal Processing, 1989,16(2) :97-108
  • 9Brink A D,Pendock N E. Minimum cross-entropy threshold selection [J]. Pattern Recognition, 1996,29(1) : 179-188
  • 10Agus Z A, Akira A. Image segmentation by histogram thresholding using hierarchical cluster analysis [J]. Pattern Recognition Letters, 2006,27(13) : 1515-1521

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部