期刊文献+

基于奇异值分解的宽基线图像匹配算法 被引量:5

Wide-baseline Image Correspondence Based on Scale and Rotation Invariant Feature
下载PDF
导出
摘要 图像匹配是计算机视觉中许多应用研究的基础。窄基线匹配技术虽然较为成熟,但是解决能力有限,不能处理较大的尺度、旋转、亮度以及仿射变化引起的宽基线图像序列的匹配。针对宽基线图像序列匹配的特点,在分析传统SVD匹配算法不足的基础上,引入具有尺度和旋转不变性的特征,改进邻近矩阵的度量方式,设计了一种新的基于奇异值分解的宽基线自动匹配算法。通过对比实验表明,该算法性能优于基于SIFT距离的匹配器和原SVD匹配算法,对于存在较大的尺度、旋转、亮度等宽基线变化的图像序列,能够自动获得更多的正确匹配点对和较高的准确性,鲁棒性强,甚至对视角和仿射变换也有一定的适应性。 Image correspondence is a key problem in computer vision. Although many matching technique in short-baseline have been developed, the wide-baseline correspondence problem with large scale, rotation, illumination and affine transformations is still not tackled very well. The paper proposed a new SVD matching method to achieve large number of accurate point correspondences between uncalibrated image sequences of the same scene for wide baseline. Normalized cross correlation between scale and rotation invariant features was introduced and the proximity matrix was redefined to improve the performance of robustness and reliability. Experimental results show that the proposed SVD matching method can be used for severe scene variations and provide evidence of improved performance with respect to the SIFT distance matcher and the previous SVD matching algorithm.
机构地区 西北工业大学
出处 《计算机科学》 CSCD 北大核心 2009年第3期223-225,265,共4页 Computer Science
基金 国家"863"高技术研究发展计划项目基金(2006AA01Z324 2007AA01Z314)课题资助
关键词 图像匹配 特征点对应 奇异值分解 Image matching, Feature point correspondence, Singular value decomposition
  • 相关文献

参考文献10

  • 1Umeyama S. Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(4) : 376-380
  • 2Chui L, Rangarajan A. A new point matching algorithm for nonrigid registration. Computer Vision and Image Understanding, 2002,89(2): 114-141
  • 3Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (4) : 509-522
  • 4Shapiro S, Brady M. Feature-based correspondence: an eigenvector approach. Image and Vision Computing, 1992, 10 (5):283- 288
  • 5Zitova B,Flusser J. Image registration methods:a survey. Image and Vision Computing, 2003,21 (11 ) : 977-1000
  • 6Carcassoni M, Hancock R. Spectral correspondence for point pattern matching. Pattern Recognition, 2003,36(1) : 193-204
  • 7Lowe D. Distinctive image features from scale - invariant keypoints. International Journal of Computer Vision, 2004,60 (2) : 91-110
  • 8Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (10) : 1615-1630
  • 9Scott G, Longuet - Higgins H. An algorithm for associating the features of two patterns//Proceedings of the Royal Society-Biological Sciences (Series B). London, UK, 1991,244 (1309):21- 26
  • 10Pilu M. A direct method for stereo correspondence based on singular value decomposition//Proceedings of IEEE Conference on Computer Vision and Pattem Recognition. San Juan,Puerto Rico,1997:261-266

同被引文献109

引证文献5

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部