期刊文献+

考虑奇异性的平面多刚体系统冲击问题理论解 被引量:1

Theoretical dynamical impact solution on planar multi-rigid-body systems considering singularity
下载PDF
导出
摘要 当处理多刚体系统的冲击问题时,经典的分析方法是通过在无限小的时间间隔上直接积分得到冲击前后的广义速度之间的关系。当库仑干摩擦的因素考虑在内时,经典的方法遇到了困难。首先,冲击的过程中切向模式的变化导致了摩擦力表达式的变化;其次,双边约束的特性会带来库仑摩擦定律中未知法向约束反力的绝对值的引入;最后,系统刚性与库仑摩擦的耦合会导致求解广义速度过程中的奇异性问题等。作者采取了分段分析的方法来处理冲击中复杂的切向模式,引入符号函数来处理未知法向约束反力的绝对值,采用"无碰冲击"来解决奇异性问题。且针对一个摩擦接触点的情况,给出了冲击前后广义速度关系的理论表达式,通过该表达式,冲击后的系统状态可以通过代数的方式获得,从而避免进入繁琐的微分过程,且在该方法中能够预测刚体冲击过程中的奇异位置以及切向滑动模式的变化条件,并因此得出结论:即使在冲量/速度水平上来研究非理想的双面约束系统的动力学问题,依然不能避免解的奇异性问题。采用文中例子验证了方法的合理性。 Impact problems on planar multi-rigid-body systems with friction are considered. When friction cannot be ignored, there are the following problems to be solved. First, the phenomenon of slip-stick and slip-reversal at the frictional applied point can cause the change of direction of the frictional force and make it difficult to integrate the frictional force over the impact interval according to the traditional impulsive dynamics of multi-rigid-body systems. Second, absolute values of unknown constraint reactions due to Coulomb frictional law are included in the dynamical equations. Furthermore, the singularity due to the coupling between tangential frictional forces and normal reactions may arise in calculating unknown reactions. Piecewise analysis over the period of different tangential motion is used to overcome the energy inconsistence and the sign function is introduced to solve the second problem. The singularity problem is solved by the method of "tangential impact". The analytical impact solution for multi-rigid-body systems with friction at one joint is obtained, i.e. , the dynamic generalized velocities after impact can be obtained according to initial conditions and geometry properties of the system before impact by using the provided formulation. This method can avoid the difficulties in solving differential equations with variable scale and the resuits can avoid the energy inconsistency before and after impact due to considering the complex of the tangential sliding mode. The singularity can be predicted by this method and draw a conclusion that the work at the impulse/velocity level cannot avoid the singularity for this sort of system. The example implies that the scheme provided in the paper is valid.
作者 姚文莉 徐鉴
出处 《振动工程学报》 EI CSCD 北大核心 2009年第1期65-69,共5页 Journal of Vibration Engineering
基金 国家杰出青年基金资助项目(10625211) 国家自然科学基金资助项目(10872118)
关键词 摩擦 奇异性 外冲击 双面约束 friction singularity external impact bilateral constraint
  • 相关文献

参考文献7

  • 1Kane T R, Levison D A. Dynamics: Theory and Applications [M]. New York: McGraw-Hill, 1985: 150-180.
  • 2Lotstedt P. Coulomb friction in two-dimensional rigid systems[J]. Z angnew Math U Mech, 1981, 61: 605-615.
  • 3Stronge W J. Theoretical coefficient of restitution for planar impact of rough elastoplastic bodies [J]. Impact, Wave and Fracture, ASME AMD, 1995, 205: 351-362.
  • 4Wenli Yao, Bin Chen, CaiShan Liu. Energetic coefficient of restitution for planar impact in multi-rigidbody systems with friction[J]. International Journal of Impact Engineering, 2005,31(3) : 255-265.
  • 5Brogliato B. Nonsmooth Mechanics [M]. 2nd ed. Springer: Berlin Heidelberg New York, 1999.
  • 6Caishan Liu, Zhen Zhao, Bin Chen. The bouncing motion appearing in a robotic system with unilateral constraint [J]. Nonlinear Dynamics, 2007, 49: 217-232.
  • 7Wenli Yao, Jian Xu. Nonlinear analysis on singularity of multi-rigid-body systems with one-point frictional contact [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2007, 8 (4): 601- 606.

同被引文献9

  • 1Painlevé P. Sur les Lois du Ffrottement de Glissement[J].Comptes Rendus Hebdomadaires des séances de l'Académie des Sciences,1895.112-115.
  • 2Brogliato B. Nonsmooth Mechanics,Models,Dynamics and Control[M].London:Springer-Verlag London Limited,1999.
  • 3Song P,Kraus P,Kumar V. Analysis of rigid-body dynamic models for simulation of systems with frictional contacts[J].Journal of Applied Mechanics,Transactions of the ASME,2001.118-128.
  • 4Shivaswamy S. Modeling contact forces and energy dissipation during impact in mechanical systems[D].Ann Arbor MI:UMI,2002.
  • 5Zhao Z,Chen B,Liu CS. Impact model resolution on Painlevé paradox[J].Acta Mechanica Sinica,2004,(06):659-660.
  • 6Zhao Z,Liu CS,Chen B. The Painlevé paradox studied at a 3D slender rod[J].Multibody System Dynamics,2008.323-343.
  • 7Genot F,Brogliato B. New results on Painlevé paradoxes[J].European Journal of Mechanics A/Solids,1999.653-677.
  • 8Liu CS,Zhen Z,Chen B. The bouncing motion appearing in a robotic system with unilateral constraint[J].Nonlinear Dynamics,2007,(1-2):217-232.
  • 9Zhao Z,Liu CS,Ma W. Experimental investigation of the Painlevé paradox in a robotic System[J].Journal of Applied Mechanics,Transactions of the ASME,2008,(04):041006.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部