期刊文献+

二值噪声作用下线性系统的随机共振 被引量:2

Stochastic Resonance of a Linear System Driven by Dichotomic Noise
下载PDF
导出
摘要 研究了二值噪声作用下的二阶过阻尼线性系统的随机共振现象。基于线性系统理论和相关删去法方法,得到了系统平均输出幅度增益的精确表达式。研究表明:输出幅度增益是噪声的强度和相关时间、系统阻尼系数,以及激励信号频率的非单调函数;另外,适当的噪声参数和系统参数可以使有噪声情况下的输出幅度增益大于无噪声时的输出幅度增益。 The phenomenon of stochastic resonance of an over-damped second-order linear system subject to dichotomic noise (DN) is investigated. Based on linear-system theory and the correlation deletion method, the explicit expression of the output amplitude gain (OAG) of the system is obtained. It is shown that the OAG is a non-monotonic function of the strength, the correlation time of the DN, the system damping coefficient, as well as the frequency of the driving signal. In addition, by choosing appropriate parameters of the noise and the system, the OAG of the noisy system can be larger than that of the noise-free system.
出处 《噪声与振动控制》 CSCD 北大核心 2009年第1期29-32,共4页 Noise and Vibration Control
关键词 振动与波 随机共振 输出幅度增益 二值噪声 过阻尼线性系统 vibration and wave stochastic resonance output amplitude gain dichotomic noise over-damped linear system
  • 相关文献

参考文献12

二级参考文献71

共引文献96

同被引文献16

  • 1徐伟,靳艳飞,徐猛,李伟.偏置信号调制下色关联噪声驱动的线性系统的随机共振[J].物理学报,2005,54(11):5027-5033. 被引量:17
  • 2郭锋,周玉荣,蒋世奇,古天祥.Stochastic resonance in a bias linear system with multiplicative and additive noise[J].Chinese Physics B,2006,15(5):947-952. 被引量:15
  • 3Li Dongxi, Xu Wei, Gao Yongfeng, et al, Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment [J]. Physics Letters A, 2011,375: 886-890.
  • 4Subramanyam R V P, Prasun K R. Magnetic resonance image enhancement using stochastic resonance in Fourier domain [J]. Magnetic Resonance Imaging, 2010, 28: 1361-1373.
  • 5Go Ashida, Masayoshi Kubo. Suprathreshold stochastic reso- nance induced by ion channel fluctuation [J]. Physica D, 2010, 239: 327-334.
  • 6Manuel Morillo, Jose Gomez-Ordonez, Jose Manuel Casado. Equilibrium and stochastic resonance in finite chains of noisy bistable elements [J]. Chemical Physics, 2010, 375: 416-423.
  • 7Fauve S, Heslot F. Stochastic Resonance in a Bistable System [J]. Phys Lett, 1983, 97A: 5-7.
  • 8Berdichev Sky V, Gitterman M. Stochastic Resonance in Linear Systems Subject to Multiplicative and Additive Noise [J]. Plays Rev E, 1999, 60: 1494-1499.
  • 9Gitterman M. Under damped Oscillator with Fluctuating Damping [J]. Physica A, 2004, 37(22): 5729-5736,.
  • 10郭锋,周玉荣,蒋世奇,古天祥.具有乘性噪声的线性振荡器的随机共振[J].电子科技大学学报,2008,37(1):77-80. 被引量:9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部