期刊文献+

小型无人机组合导航系统的平方根UKF技术研究 被引量:3

Square-root Unscented Kalman Filter of Small UAV Integrated Navigation System
下载PDF
导出
摘要 由于小型无人机组合导航系统的误差模型与观测模型均为非线性,对模型进行线性化的扩展卡尔曼滤波会引入线性化过程中忽略高次项的误差,导致滤波器性能下降。提出将平方根UKF方法(SRUKF)用于小型无人机IMU/GPS组合导航,SRUKF方法利用协方差平方根代替协方差参加递推运算,保证滤波算法的数值稳定性,提高组合定位的精度和可靠性。仿真结果表明,SRUKF方法是组合导航中一种很好的非线性滤波方法,实现了低成本、高精度的实时定位。 The process models and measurement models of the integrated navigation system, which is applied to small UAV, are strongly nonlinear. When the effects of the higher order terms of the Taylor series expansion become significant, EKF can seriously affect the accuracy or even lead to divergence of any inference system. A new filter algorithm based on square root unscented Kaman filter (SRUKF) is presented and used to the integrated navigation system of small UAV. SRUKF takes covariance square root matrix instead of covariance one in,filter iteration, which effectively avoided filtering divergence, and meanwhile improved the convergence velocity and stability of the algorithm. The results of simulation prove that SRUKF is a more'ideal nonlinear filtering method for the integrated navigation of small UAV and can obtain higher accuracy solutions.
出处 《弹箭与制导学报》 CSCD 北大核心 2009年第1期91-94,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 航天支撑技术基金资助
关键词 小型无人机 惯性测量装置 全球定位系统 组合导航 平方根UKF small UAV IMU GPS integrated navigation square-root UKF
  • 相关文献

参考文献7

  • 1Jong-Hyuk Kim,Stuart Wishart, Salah Sukkarieh. Real-time navigation, guidance, and eontrol of a UAV using low cost sensors[OL], http://engnet. anu. edu. au/DE people/Jonghyuk. kim/pdf/FSR03 - NavGuidCtrl-Kim. pdf.
  • 2高为广,何海波,陈金平.自适应UKF算法及其在GPS/INS组合导航中的应用[J].北京理工大学学报,2008,28(6):505-509. 被引量:36
  • 3徐慧娟,吴美平,罗兵.EKF和UKF在INS/GPS组合导航中的应用分析[J].航天控制,2006,24(6):7-10. 被引量:15
  • 4Oh SM, Johnson EN. Development of UAV navigation system based on unscented Kalman filter [C]// Proceedings of AIAA Guidance, Navigation, and Control Confernee and Exhibit, Keystn, Colorado, 2006, AIAA- 2006 - 6351.
  • 5Kong XY. INS algorithm using quaternion model for low cost IMU[J]. Robotics and Autonomous Systems,2004,46 (4) :221-246.
  • 6Julier S, Uhlmann J, Hugh F. A new method for the nonlinear transformation of means and covariance in filters and estimators[J]. IEEE Transaction on Automatic Control, 2000,45 (3): 477 - 482
  • 7Van Der Merwe R, Wan E A. The square root unscented Kalman filter for state and parameter estimation[C]// Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, New York, 2001 : 3461 -3464.

二级参考文献14

  • 1YANG Yuanxi,GAO Weiguang.A new learning statistic for adaptive filter based on predicted residuals[J].Progress in Natural Science:Materials International,2006,16(8):833-837. 被引量:71
  • 2GAO Weiguang YANG Yuanxi CUI Xianqiang ZHANG Shuangcheng.Application of Adaptive Kalman Filtering Algorithm in IMU/GPS Integrated Navigation System[J].Geo-Spatial Information Science,2007,10(1):22-26. 被引量:13
  • 3Simon Julier,Jeffrey K.Uhlmann,and Hugh F.DurrantWhyte.A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators[J].IEEE Transaction on Automatic Control.2000,45 (3):477 ~ 482.
  • 4Simon J.Julier,Jeffrey K.Uhlmann.Unscented Filtering and Nonlinear Estimation[J].Proceedings of the IEEE.2004,92 (3):401 ~ 422.
  • 5Van der Merwe,R.,Wan,E.A.,and Julier,S.I.Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor Fusion:Application to Integrated Navigation[J].AIAA Guidance,Navigation,and Control Conference,Providence,RI,August 2004,AIAA-2004-5120.
  • 6John L.Crassidis.Sigma-Point Kalman Filtering for Integrated GPS and Inertial Navigation[J].AIAA Guidance,Navigation,and Control Conference and Exhibit 15 -18August 2005,AIAA-2005-6052.
  • 7Uhlmann J K. Algorithm for multiple target tracking [J]. American Science, 1992,80(2) -.128 - 141.
  • 8Sorenson H W. Kalman filtering: theory and application [M]. New York:IEEE Press, 1985.
  • 9Yang Yuanxi, He Haibo, Xu Guochang. Adaptively robust filtering for kinematic geodetic positioning [J]. Journal of Geodesy, 2001,75(2): 109 - 116.
  • 10Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEEE Proc on Radar and Signal Processing, 1993,140(2) :107 - 113.

共引文献49

同被引文献21

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部