期刊文献+

■ukasiewicz命题逻辑系统中有限命题集的约简理论 被引量:2

Reduction theory of finite proposition set in ■ukasiewicz propositional logic
下载PDF
导出
摘要 在n值■ukasiewicz命题逻辑中提出了命题集Γ的约简理论,引入由命题集Γ所诱导的形式背景的概念,从Γ及其子集的关系出发给出了n值命题逻辑中有限命题集Γ约简的判定定理以及求Γ约简的方法。说明了无穷值■ukasiewicz命题逻辑中命题集Γ的约简可转化为n值情形。 The theory of Г-reduction in n-valued L ukasiewicz propositional logic is introduced,the formal context of the propositional set Г is introduced and investigated.Several ways to determine the Г-reduction are studied by investigating the relationship between Г and their subsets.The reduction of propositional set Г in Lukasiewicz infinite valued logic can be reduced to n-valued Lukasiewiez propositional logic.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第7期44-45,51,共3页 Computer Engineering and Applications
基金 陕西省教育厅科研计划项目(No.08JK432)
关键词 ■ukasiewicz命题逻辑 完备性定理 Γ约简 形式背景 Lukasiewicz propositional logic complete theorem F-reduction formal context
  • 相关文献

参考文献8

  • 1Liberatore P.Redundancy in logic Ⅰ:CNF propositional formulae[J]. Artificition Intelligence,2005,163(2) :203-232.
  • 2Liberatore P.Redundancy in logic Ⅱ:2-CNF and horn propositional formtdae[J].Artificition Intelligence,2008,172(2/3):265-299.
  • 3Liberatore P.Redundancy in logic Ⅲ:Non-monotonic reasoning[J]. Artificition Intelligence,2008,172( 11 ) : 1317-1359.
  • 4任燕,马晓珏,王洪涛.~*命题集的约简及命题集的根[J].模糊系统与数学,2006,20(2):23-27. 被引量:6
  • 5李立峰,张东晓.概念格在二值命题逻辑命题集约简中的应用[J].电子学报,2007,35(8):1538-1542. 被引量:11
  • 6Hajek P.Metamathematics of fuzzy logic[M].Dordrecht:Kluwer Academic Publishers, 1998.
  • 7Gottwald S A.A treative on many-valued logic[M].Baldoek:Research Studies Press LTD,2001.
  • 8Aguzzoli S,Ciabattoni A.Finiteness in Infinite-Valued Lukasiewicz Logic[J].Journal of Logic, Language and Information, 2000,9: 5-29.

二级参考文献14

  • 1强宇,刘宗田,林炜,时百胜,李云.模糊概念格在知识发现的应用及一种构造算法[J].电子学报,2005,33(2):350-353. 被引量:21
  • 2张文修,魏玲,祁建军.概念格的属性约简理论与方法[J].中国科学(E辑),2005,35(6):628-639. 被引量:194
  • 3任燕,马晓珏,王洪涛.~*命题集的约简及命题集的根[J].模糊系统与数学,2006,20(2):23-27. 被引量:6
  • 4刘清.Rough集及Rough推理[M].北京:科学出版社,2003..
  • 5Birkhoff G.Lattice theory AMS[M].Providence,1973.
  • 6Hajek P.Metamathematics of Fuzy logic[M].London:Kluwer Academic Publishers,1998.
  • 7Wille R. Restructuring Lattice Theory:An Approach Based on Hierarchies of Concepts[ M]. Rival I. Ordered Sets. Dordrechtaoston:Reidel, 1982.445 --470..
  • 8P Hajek. Metamathematics of Fuzzy Logic [ M ]. Dordrecht: Kluwer Academic Publishers, 1998.
  • 9B Ganter, R Wille.Formal Concept Analysis: Mathematical Foundations[M]. Berlin: Springer, 1999.
  • 10GJ Wang,WX Zhang. Consistency degrees of finite theories in Lukasiewicz propositional fuzzy logic[ J ]. Fuzzy Sets and System, 2005,149(3) :275 - 284.

共引文献12

同被引文献12

  • 1王国俊.计量逻辑学(Ⅰ)[J].工程数学学报,2006,23(2):191-215. 被引量:199
  • 2任燕,马晓珏,王洪涛.~*命题集的约简及命题集的根[J].模糊系统与数学,2006,20(2):23-27. 被引量:6
  • 3李立峰,张东晓.概念格在二值命题逻辑命题集约简中的应用[J].电子学报,2007,35(8):1538-1542. 被引量:11
  • 4Liberatore P. Redundancy in Logic II: 2CNF and Horn Propositional Formulae. Artificial Intelligence, 2008, 172 (2/3) : 265-299.
  • 5Liberatore P. Redundancy in Logic HI: Non-Monotonic Reasoning. Artificial Intelligence, 2008, 172( 11 ) : 1317-1359.
  • 6Liberatore P. Redundancy in Logic I: CNF Prepositional Formulae. Artificial Intelligence, 2005, 163(2) : 203-232.
  • 7Ganter B, Wille R. Formal Concept Analysis Mathematical Founda- tions. Secaueus, USA: Springer-Verlag, 1999.
  • 8Eiter T, Gottlob G. Identifying the Minimal Transversals of a Hy- pergraph and Related Problems. SIAM Journal on Computing, 1995, 24(6) : 1278-1304.
  • 9Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-CompIeteness. New York, USA: Freeman, 1990.
  • 10于鹏,刘凤雏,王三五.广义MP问题的三I真度解[J].计算机工程与应用,2009,45(12):47-49. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部