期刊文献+

Sugeno测度空间基于复样本的统计学习理论 被引量:3

Statistical learning theory of complex samples on Sugeno measure space
下载PDF
导出
摘要 引入复g_λ随机变量、准范数的定义,给出了复g_λ随机变量的期望和方差的概念及若干性质;证明了基于复g_λ随机变量的马尔可夫不等式、契比雪夫不等式和辛钦大数定律;提出了Sugeno测度空间中复经验风险泛函、复期望风险泛函以及复经验风险最小化原则严格一致性等定义;证明并构建了基于复g_λ随机样本的统计学习理论的关键定理和学习过程一致收敛速度的界,为系统建立基于复g_λ随机样本的统计学习理论奠定了理论基础。 Firstly,the definitions of complex gλ random variable and primary norm are introduced.Next the concepts and some properties of the mathematical expectation and variance of complex gλ random variables are provided.Secondly,for complex gλ random variables,a number of fundamental concepts such as e.g.,Markov's inequalities,Chebyshev's inequalities and a Khinchine's law of large numbers are discussed.Finally,the definitions of the complex empirical risk functional,the complex expected risk functional and complex empirical risk minimization principle on Sugeno measure space are proposed.Then the key theorem of.learning theory based on complex gλ random samples is proved,and the bounds on the rate of uniform convergence of learning process are constructed.The investigations help lay essential theoretical foundations for the systematic and comprehensive development of the statistical learning theory of complex gλ random samples.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第7期59-64,共6页 Computer Engineering and Applications
基金 国家自然科学基金No.60773062 河北省自然科学基金No.2008000633 教育部科学技术研究重点项目No.206012 河北省教育厅科研计划重点项目No.2005001D~~
关键词 Sugeno测度空间 准范数 复经验风险最小化原则 关键定理 收敛速度的界 Sugeno measure space primary norm complex empirical risk minimization principle the key theorem the bounds on the rate of convergence
  • 相关文献

参考文献16

  • 1Vapnik V N.The nature of statistical learning theory[M].New York: Springer-Verlag, 1995.
  • 2Vapnik V N.Statistical learning theory[M].New York:A Wiley-Interscience Publication, 1998.
  • 3Vapnik V N.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks, 1999,10(5) :988-999.
  • 4Evgeniou T,Poggio T,Pontil M,et al.Regularization and statistical learning theory for data analysis[J].Computational Statistics & Data Analysis, 2002,38 : 421-432.
  • 5Wechsler H,Duric Z,Li F,et al.Motion estimation using statistical learning theory[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26(4) : 466-478.
  • 6Brunato M,Battiti R.Statistical learning theory for location fingerprinting in wireless LANs[J].Computer Networks, 2005,47 : 825-845.
  • 7Lu J W,Zhang E H.Gait recognition for human identification based on ICA and fuzzy SVM through muhiple views fusion[J]. Pattern Recognition Letters, 2007,28(16) : 2401-2411.
  • 8Camastra F.A SVM-based cursive character recognizer[J].Pattern Recognition, 2007,40( 12 ) : 3721-3727.
  • 9段丹青,陈松乔,杨卫平.网络入侵检测中的支持向量机主动学习算法[J].计算机工程与应用,2006,42(1):117-119. 被引量:5
  • 10赵凌志,刘颖,覃征.Weighted SVM在蛋白质磷酸化位点预测中的应用[J].计算机工程与应用,2006,42(3):155-157. 被引量:10

二级参考文献31

  • 1哈明虎,王瑞省,张琳.模糊积分在物流系统工程中的应用[J].模糊系统与数学,2004,18(4):72-76. 被引量:12
  • 2Lewis D,W Gale.A Sequential Algorithm for Training Text Classifiers[C].In:Proceeding of the Seventeenth Annual International ACMSIGIR Conference on Research and Development in Information Retrieval, Spring-Verlag, 1994 : 3 - 12.
  • 3Simon Tong,Edward Chang.Support Vector Machine Active Learning for Image Retrieval[C].In:Proceedings of the ninth ACM international conference on Multimedia, Ottawa,Canada, 2001;09:107-118.
  • 4S Tong,D Koller.Support Vector Machine Active Leaming with Applications to Text Classification[J].Machine Learning Research,2001;2(11):45-66.
  • 5Burges C J.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery, 199$ ; (2) : 121-167.
  • 6Vapnik V.Statistical learning theory[M].New York:Wiley,1998.
  • 7Osuna E,Freund R,Girosi F.Support vector machines:Training and applications[Z].AI Memo 1602,Massachusetts Institute of Technology, 1997.
  • 8Wang M,Yang J,Liu G-P et al.Weighted-support vector machines for predicting membrance protein types based on pseudo-amino acid composition[J].Protein Engineering,Design & Selection,2004;17(6): 509-516.
  • 9Kim J-H,Lee J,Oh Bet al.Prediction of phosphorylation sites using SVMs[J].Bioinformatics, 2004; 20 ( 17 ) : 3179-3184.
  • 10HanJ.KamberM.范明 孟小峰译.数据挖掘-概念与技术[M].北京:机械工业出版社,2001..

共引文献28

同被引文献15

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部