期刊文献+

关联规则的鲁棒性分析与应用 被引量:2

Analysis and application on robustness of association rules
下载PDF
导出
摘要 首先对采用支持度、置信度和改善度阈值来选择关联规则的不足进行了分析,然后引入规则的鲁棒性分析,提出了基于lift条件下的关联规则鲁棒性判断,能够在若干规则中选择出鲁棒性高的规则,提供决策参考,最后给出了实例应用。 Some shortages of association rules mining based on support-confidence and lift calculation are analyzed.Then the robustness of association rules are introduced to judge the interestingness of rules.The paper proposes a measure based on the robustness of association rules,which can be used to select high robustness rules for decision aiding.Finally an application is presented.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第7期178-180,共3页 Computer Engineering and Applications
关键词 数据挖掘 鲁棒性 改善度 关联规则 data mining robustness lift association rules
  • 相关文献

参考文献5

  • 1吴永梁,陈炼.基于改善度计算的有效关联规则[J].计算机工程,2003,29(13):98-100. 被引量:5
  • 2Lenca P ,Vaillant B ,Lallich S.On the robustness of association rules[C]//IEEE Conference on Cybernetics and Intelligent Systems, 2006.
  • 3Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//Buneman P,Jajodia S.Proccedings of the 1993 ACM SIGMOD International Conference on Management of Data,Washington,D C,1993.
  • 4Silberschatz A ,Tuzhilin A.What makes patterns interesting in knowledge discovery systems[C]//IEEE Transactions on Knowledge and Data Engineering, 1996,8.
  • 5朱金伟,鞠时光,辛燕.基于数据挖掘的中医药数据预处理方法[J].计算机工程,2006,32(15):280-282. 被引量:23

二级参考文献9

  • 1HanJ.Kamber M Data Mining Concepts and Techniques[M].北京:机械工业出版社,.2001-08.
  • 2史忠植.智能主体与应用[M].北京:科学出版社,2000..
  • 3Agrawal R. The Quest Data Mining System. In: Proc. of KDD,Portland, Oregon, 1996.
  • 4Lin J L, Dunham M H. Mining Association Tules: Anti-skew Algorithms. Proceedings of the International Conference on Data Engingeering, Orlando, Florida, 1998-02.
  • 5Han Jiawei.Data Mining Concepts and Techniques[M].Morgan Kaufmann Publishers,2000.
  • 6Hong T P,Chen J B.Processing Individual Fuzzy Attributes for Fuzzy Rules Induction[J].Fuzzy Sets and Systems,2000,112 (1):127-140.
  • 7Kaufman L,Rousseeuw P J.Finding Groups in Data:An Introduction to Cluster Analysis[M].John Wiley & Sons,1990.
  • 8赵亮,王培康.关联规则发现:综述[J].计算机工程与应用,2001,37(8):94-96. 被引量:21
  • 9何炎祥,石莉,张戈,黄浩,李超.关联规则的几种开采算法及其比较分析[J].小型微型计算机系统,2001,22(9):1065-1068. 被引量:19

共引文献26

同被引文献15

  • 1朱秋萍,毛平平,罗俊.基于关联规则的入侵检测系统[J].计算机工程与应用,2004,40(26):160-162. 被引量:7
  • 2韩正平,蔡凤娟,许榕生.网络安全信息关联分析技术研究与应用[J].计算机应用研究,2006,23(10):93-94. 被引量:9
  • 3顾和亚.计算机网络在我院住院药房管理中的应用[J].中国药房,2007,18(22):1707-1708. 被引量:3
  • 4BAKOS G, BERK V.Early detection of Internet worm activity by metering ICMP destination unreachable activity[C]//Proc of SPIE Conference on Sensors, and Command, Control, Communications and Intelligence.Orlando: [s.n.], 2002:33-42.
  • 5CHENG C M, KUNG H, TAN K S.Use of spectral analysis in defense against DOS attacks[C]//Proc of IEEE GLOBECOM.Taipei: [s.n.],2002:2143-2148.
  • 6http//www.internet2.edu/network[EB/OL].
  • 7LAKHINA A, CROVELLA M, DIOT C.Mining anomalies using traffic feature distributions[C]//Proc of ACM SIGCOMM.Philadelphia: [s.n.], 2005:217-228.
  • 8BASS T.Intrusion detection systems and multisensor data fusion: creating cyberspace situational awareness [J].Communications of the ACM,2000,43(4):99-105.
  • 9ANDERSSON D, FONG M, VALDES A.Heterogeneous sensor correlation: a case study of live traffic analysis[C]//Proc of IEEE Information Assurance Workshop.New York:[s.n.],2002:1-12.
  • 10AGRAWAL R, SRIKANT R.Fast algorithms for mining association rules[C]//Proc of the 20th VLDB Conference.Santiago:[s.n.]1994:487-499.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部