期刊文献+

基于Voronoi图和遗传算法的航迹规划 被引量:8

Path Planning Based on Voronoi Diagram and Genetic Algorithm
下载PDF
导出
摘要 面对复杂的作战环境,如何快速地规划出满足约束条件的飞行轨迹,是实现无人机突防攻击的关键。提出了一种基于Voronoi图和改进遗传算法的航迹规划方法,该方法采取分层规划的思想,首先由Voronoi图生成初始航迹,并综合考虑约束条件,赋予各条航迹相应的权值;然后采用遗传算法在生成的航迹空间中寻优,从而得到满意的航迹。为避免产生不可行解,采取了基于优先级编码的改进遗传算法,详细介绍了其编码与解码原理,并给出了相应的操作算子。仿真结果表明,整个航迹规划的思路是可行的。 In the complex combat environment, how to plan the flight path quickly which fulfills some constraints is critical for defense penetration of Unmanned Air Vehicle ( UAV ). An approach of path planning based on Voronoi diagram and modified genetic algorithm was proposed, which adopts the principle of hierarchical planning. First, the Voronoi diagram was utilized to generate the initial paths and calculate the weight of the paths by considering the constraints. Then the optimal path was searched by using genetic algorithm. For avoiding generation of infeasible solution, a priority-based encoding method was adopted. The principle of encoding and decoding was illustrated carefully, and the genetic operators were designed. Simulation result showed that the approach proposed is feasible.
出处 《电光与控制》 北大核心 2009年第3期9-12,共4页 Electronics Optics & Control
基金 军队重点科研基金资助项目(KJ06087)
关键词 无人机 航迹规划 遗传算法 VORONOI图 优先级编码 UAV path planning genetic algorithm Voronoi diagram priority-based encoding
  • 相关文献

参考文献9

  • 1杜萍,杨春.飞行器航迹规划算法综述[J].飞行力学,2005,23(2):10-14. 被引量:62
  • 2叶媛媛,闵春平,沈林成,常文森.基于VORONOI图的无人机空域任务规划方法研究[J].系统仿真学报,2005,17(6):1353-1355. 被引量:45
  • 3LU Y, TAN C L . Constructing area Voronoi diagram in document images [ C ]// Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR05) ,2005.
  • 4TREFFTZ C, SZAKAS J . Parallel algorithms to find the Voronoi diagram and the order-k Voronoi diagram [ C ]// Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS03) ,2003.
  • 5WU Xiaojun, LUO Xuefang. The algorithm for creating weighted Voronoi diagrams based on cellular automation [ C]//Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23 ,Dalian,China, 2006:4630- 4632.
  • 6肖秦琨,高晓光.基于空间改进型Voronoi图的无人机路径规划研究[J].计算机工程与应用,2005,41(26):204-207. 被引量:7
  • 7BORTOFF S A . Path planning for UAVs [ C ]//Proceedings of the American Control Conference, 2000:364-368.
  • 8CHENG R,GEN M. Resource constrained project scheduling problem using genetic algorithm [ J ]. International Journal of Intelligent Automation and Soft Computing, 1997 ( 3 ) : 273- 286.
  • 9GEN M ,CHENG R,WANG D. Genetic algorithms for solving shortest path problems [ C ]// Proceedings of IEEE International Conference on Evolutionary Computing, Indianapolis, Indiana, 1997 : 401 - 406.

二级参考文献38

  • 1邱晓红,张林昌,高金源.战术飞行任务的水平航迹快速生成算法[J].北京航空航天大学学报,1996,22(6):775-779. 被引量:10
  • 2朱宝鎏 朱荣昌 等.作战飞机效能评估[M].北京:航空工业出版社,1993..
  • 3张考.飞行器对雷达隐身性能计算与分析[M].北京:国防工业出版社,1997..
  • 4Lydia E Kavraki et al.Analysis of probabilistic road maps for path planning[J].IEEE transaction on Robotics and Automation, 1998; 14 (1):166-171.
  • 5Rober Bohlin,Lydia E Kavraki.Path planning using lazy PRM[C].In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, 2000: 521-528.
  • 6Emilio Frazzoli et al.Real-time motion planning for agile autonomous vehicles[J].Journal of Guidance, Control and Dynamics, 2002 ; 25 ( 1 ) : 116-129.
  • 7Marc W McConley et al.Hybrid control for aggressive maneuvering of autonomous aerial veicles[C].In:Proceedings of the 19th Digital Avionics Systems Conference,2000.
  • 8Emilio Frazzoli.Robusthy brid control for autonomous vehicle motion planning[D].Ph D Dissertation.Massachusetts Instatute of Technology, 2001.
  • 9杨有龙.[D].西北工业大学,2003-04.
  • 10Kevin P Murphy.Dynamic Bayesian Networks[M].www.ai.mit.edu/_murphyk, 2002-12.

共引文献109

同被引文献61

引证文献8

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部