期刊文献+

有限分形介质中带有分数阶振子的分数阶反应扩散方程及其解析解

The solution of the fractional reaction-diffusion equation with a fractional oscillator in a finite fractal medium
原文传递
导出
摘要 建立了有限分形介质中带有分数阶振子的分数阶反应扩散方程,利用Laplace变换和有限Hankel变换及相应的逆变换,给出上述问题浓度分布的解析解并以广义Mittag-Leffler的形式给予表示。将二维,三维空间以及整数阶的有限分形介质中反应扩散的模型作为本文的特例进行讨论。 The fractional reaction-diffusion differential equation with a fractional oscillator in a finite fractal medium was established. By applying Laplace transformation, the finite Hankel transformation and their inverse transform, the exact solution of the model were obtained. The expression in the form of the generalized Mittag-Leffler function was given. Finally, the solutions of twodimensional space, three-dimensional space and the integral diffusion equation as some particular eases of this paper were discussed.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2009年第2期24-27,共4页 Journal of Shandong University(Natural Science)
基金 山东省自然科学基金资助项目(Y2007A06)
关键词 分数阶微积分 分形介质 分数阶振子 LAPLACE变换 有限Hankel·变换 广义Mittag-Leffler函数 fractional calculus fractal medium fractional oscillator laplace transform the finite Hankel transform generalized Mittag-Leffler function
  • 相关文献

参考文献4

二级参考文献31

  • 1黄军旗,何光渝,刘慈群.双筒流变仪中广义二阶流体运动分析[J].中国科学(A辑),1996,26(10):912-920. 被引量:10
  • 2阿梅托夫 著. 陈宝来 卢学成 译.重质高黏原油的开采[M].北京: 石油工业出版社,1990.20~42.
  • 3Ren Fuyao ,Liang Jinrong, Wang Xiaotian. The determination of the diffusion kernel on fractals and fractional diffusion equation for transport phenomena in random media[J]. Physics Letters A,1999,252(3) :141-150.
  • 4Giona M ,Roman H E. Fractional diffusion equation for transport phenomena in random media[J].Physica A,1992,185:87-97.
  • 5Henry B I,Wearne S L. Fractional reaction-diffusion[J]. Physica A, 2000,276 (3) : 448-455.
  • 6Schneider W R ,Wyss W. Fractional diffusion and wave equations[J]. J. Math. Phys. , 1989,30(1 ):134-144.
  • 7Podlubny I. Fractional Differential Equations[M]. San Diego : Academic Press, 1999.
  • 8Hilfer R. Fractional diffusion based on Riemann-Liouville fractional derivatives[J]. J. Phys. Chem.B, 2000,104:3914-3917.
  • 9Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena[J].Chaos,Solitons and Fractals, 1996,7 (9) : 1461-1477.
  • 10Mathai A M,Saxena R K. The H-function with Applications in Statistics and Other Disciplines[M]. New Delhi : Wiley Eastern Limited, 1978.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部