摘要
设G是简单图,图G的一个k-点可区别IE-全染色(简记为k-VDIET染色)f是指一个从V(G)∪E(G)到{1,2,…,k}的映射,且满足:uv∈E(G),有f(u)≠f(v);u,v∈V(G),u≠v,有C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}。数min{k|G有一个k-VDIET染色}称为图G的点可区别IE-全色数,记为χievt(G)。本文给出了完全二部图K5,n(n≥6)的点可区别IE-全色数。
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C (u) be the set of colors of vertex u and edges incident to u under f. For an IE- total coloring f of G using k colors, if C (u) ≠ C (v) for any two different vertices u and v of V(G), then f is called a k-ver- tex-distingnishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χvt^ie (G), and it is called the VDIET chromatic number of G. VDIET chromatic numbers for the complete bipartite graph K5. n ( n≥ 6) were given.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2009年第2期91-96,共6页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(10771091)
关键词
图
点可区别IE-全染色
点可区别IE-全色数
完全二部图
graphs
vertex-distinguishing IE-total coloring
vertex-distinguishing IE-total chromatic number
complete bipartite graph