期刊文献+

完全二部图K_(5,n)的点可区别IE-全染色 被引量:10

Vertex distinguishing IE-total chromatic numbers of complete bipartite graph K_(5,n)
原文传递
导出
摘要 设G是简单图,图G的一个k-点可区别IE-全染色(简记为k-VDIET染色)f是指一个从V(G)∪E(G)到{1,2,…,k}的映射,且满足:uv∈E(G),有f(u)≠f(v);u,v∈V(G),u≠v,有C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}。数min{k|G有一个k-VDIET染色}称为图G的点可区别IE-全色数,记为χievt(G)。本文给出了完全二部图K5,n(n≥6)的点可区别IE-全色数。 Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C (u) be the set of colors of vertex u and edges incident to u under f. For an IE- total coloring f of G using k colors, if C (u) ≠ C (v) for any two different vertices u and v of V(G), then f is called a k-ver- tex-distingnishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χvt^ie (G), and it is called the VDIET chromatic number of G. VDIET chromatic numbers for the complete bipartite graph K5. n ( n≥ 6) were given.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2009年第2期91-96,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10771091)
关键词 点可区别IE-全染色 点可区别IE-全色数 完全二部图 graphs vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number complete bipartite graph
  • 相关文献

参考文献2

二级参考文献5

  • 1Burris A C, Schelp R H. Vertex - distinguishing proper edge - colorings [J]. J of Graph Theory,1997, 26: 73-82.
  • 2Balister P N, Bollobás B, Schelp R H. Vertex distinguishing colorings of graphs with Δ(G) = 2[J].Discrete Mathematics, 2002, 252: 17-29.
  • 3Balister P N, Riordan O M, Schelp R H. Vertexdistinguishing edge colorings of graphs [J]. J of Graph Theory, 2003, 42: 95-109.
  • 4Bazgan C, Harkat-Benhamdine A, Li Hao, et al. On the vertex-distinguishing edge colorings of graphs[J]. J of Combin Theory, 1999, 75: 288-301.
  • 5Hornák P N, Soták R. Asympotic behaviour of the observability of Qn [J]. Discrete Mathematics, 1997,176: 139-148.

共引文献15

同被引文献53

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2WOODALL Douglas R.Adjacent strong edge colorings and total colorings of regular graphs[J].Science China Mathematics,2009,52(5):973-980. 被引量:10
  • 3ZHANG ZhongFu,CHENG Hui,YAO Bing,LI JingWen,CHEN XiangEn,XU BaoGen.On the adjacent-vertex-strongly-distinguishing total coloring of graphs[J].Science China Mathematics,2008,51(3):427-436. 被引量:79
  • 4陈祥恩.n-方体的点可区别全色数的渐近性态[J].西北师范大学学报(自然科学版),2005,41(5):1-3. 被引量:16
  • 5ZHANG Zhongfu, QIU Pengxiang, XU Baogen, et al. Vertex-distinguishing total colorings of graphs [ J]. Ars Combinatoria, 2008, 87:33-45.
  • 6ZHANG Zhongfu, QIU Pengxiang, XU Baogen, et al. vertex-distinguishing total colorings of graphs [J]. Ars Combinatoria, 2008, 87:33-45.
  • 7ZHANG zhongfu, QIU Pengxiang, XU Baogen, et al. verter - dis- tinguishing total colourings of graphs [ J ]. Ars Combinatoria, 2008,87 : 33 - 45.
  • 8Machida M, Dubousset J, Satoh T, et al. Pathologic mechanism of experimental scoliosis in pinealectomized chickens. Spine 2001;26:385 -91
  • 9Machida M, Dubousset J, Imamura Y, et al. Role of melatonin deficiency in the development of scoliosis in inealectomised chickens. J Bone Joint Surg (Br)1995; 77:134 - 8
  • 10李琼,陈祥恩,刘信生.图的一般邻点可区别色指标[J].西北师范大学学报(自然科学版),2007,43(5):18-21. 被引量:4

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部