期刊文献+

天山北部拟南芥生存群落特征及其与环境的关系 被引量:10

Community characteristics of Arabidopsis thaliana natural populations in the northern Tianshan Mountains along with relevant environmental factors
下载PDF
导出
摘要 为了解拟南芥在天山北部的分布状况及环境依赖特点,分析拟南芥的自然选择特征,本文对天山北部分布的13个拟南芥(Arabidopsis thaliana)生存群落结构、组成及其与环境关系进行了研究,并分析了拟南芥与群落主要物种的种间联结性。结果表明:拟南芥生存的群落结构简单,其中天山北坡中段的石河子、一四三团、沙湾、独山子地区的8个群落均为草本类型,优势种相似,而与伊犁果子沟、额敏和阿勒泰的5个群落差别较大。属的区系成分分析表明世界分布、北温带分布以及地中海、西亚至中亚分布型成分占大多数,具有典型的地中海旱生植物区系分布特征,体现了本地拟南芥分布及演化的干旱、半干旱的地理环境特点。采用双向指示种分析(TWINSPAN)将13个群落分为新疆绢蒿-猪毛菜-角果毛茛(Seriphidium kaschgaricum-Salsola collina-Ceratocephalus testicula-tus)、新疆绢蒿-猪毛菜(S.kaschgaricum-S.collina)、新疆绢蒿-狭果鹤虱(S.kaschgaricum-Lappula semiglabra)、新疆绢蒿-旱麦草(S.kaschgaricum-Eremopyrum triticeum)、勿忘草-草原苔草(Myosotis sylvatica-Carex liparocarpos)5个群落类型。去势典范对应分析(DCCA)表明经度、坡向、土壤有机质及pH值是决定天山北部拟南芥种群分布的主导因子。拟南芥分布与群落内其他物种有极强的依赖关系,与13个群落62个主要物种的种间联结性分析表明,共有119个正关联性种对,明显高于72个负关联性种对,与各群落优势种呈显著正关联。拟南芥种群分布数量在群落间差异较大,分布于降雨较少的天山中部浅山地带拟南芥种群数量均高于降雨较丰富的天山西部伊犁果子沟地区,是否发生适应性分化需要深入研究。 Arabidopsis thaliana is a model organism widely-used to study molecular and developmental biology, physiology and cell biology. The Tianshan Mountains is one of the main distribution regions of A. thaliana. To evaluate the distribution and the environmental stress ofA. thaliana in arid land, we character- ized A. thaliana communities in the northern Tianshan Mountains along with relevant environmental factors. Eight communities found in the middle Tianshan Mountains were herb types and their dominant species were similar, but another five communities distributed in the western Tianshans and Altai region were markedly different. The recorded 77 species were classified into 22 families and 64 genera, and species richness of the 13 communities was relatively low. Most species belonged to Cosmopolitan (areal-type 1), North Temperate (areal-type 8), Mediterranean, and West Asia to Central Asia (areal-type 12) areal-types, reflecting the arid and semi-arid geographical features of the area. Based on the Two-Way Indicator Species Analysis (TWIN- SPAN) method, the 13 communities were classified into five hierarchical levels: Seriphidium kaschgarieum-Salsola collina-Ceratocephalus testiculatus, S. kaschgaricum--S, collina, S. kaschgaricum-Lappula semiglabra, S. kaschgaricum-Eremopyrum triticeum, and Myosotis sylvatica-Cyperus microiria. Interspeci- fic association analysis showed that among 62 main species in the 13 communities, 119 species-pairs exhib- ited significant a positive association; more than the 72 species-pairs with a negative association. In particu- lar, A. thaliana showed a statistically significant, positive association with the dominant species in each community, indicating a strong positive dependence ofA. thaliana with other species. Detrended Canonical Correspondence Analysis (DCCA) showed that longitude, topography, soil organic matter and pH were the dominant factors affecting the distribution of A. thaliana populations in the northern Tianshan Mountains. Abundance and distribution of species differed among communities. Populations were more prevalent in the middle northern Tianshan Mountains with lower rainfall than in the western Tianshan Mountains. Further re- search is needed to explain whether there is the adaptive differentiation.
出处 《生物多样性》 CAS CSCD 北大核心 2009年第1期51-61,共11页 Biodiversity Science
基金 国家自然科学基金项目(30760047)
关键词 ARABIDOPSIS THALIANA 植被-环境关系 区系分析 排序 种间联结 干旱半干旱区 Arabidopsis thaliana, vegetation-environment relationships, flora analysis, classification, ordination, interspecific association, arid and semi-arid area
  • 相关文献

参考文献36

  • 1Agricultural Chemistry Committee of Soil Science Society of China (中国土壤学会农业化学专业委员会) (1983) Coventional Methods for the Agricultural Chemical Analysis of Soil (土壤农业化学常规分析方法). Science Press, Beijing.
  • 2Bakker EG, Stahl EA, Toomajian C, Nordborg M, Kreitman M, Bergelson J (2006) Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range. MoleeularEcology, 15, 1405-1418.
  • 3Brooker RW, Meastre FT, Callaway RM, Lortie CL, Cavieres LA, Kimstler G, Liancourt P, Tielborger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 96, 18-34.
  • 4Clauss M J, Koch MA (2006) Poorly known relatives of Arabidopsis thaliana. Trends in Plant Science, 11, 449459.
  • 5Hill MO, Smilauer P (2005) TWINSPANfor Windows version 2.3. Centre for Ecology and Hydrology and University of South Bohemia, Huntingdon and Ceske Budejovice.
  • 6Hoffmann MH (2002) Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). Journal of Biogeography, 29, 125-134.
  • 7Hoffmann MH (2005) Evolution of the realized climatic niche in the genus Arabidopsis (Brassicaceae). Evolution, 59, 1425-1436.
  • 8Kawecki T J, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241.
  • 9Koch MA, Matschinger M (2007) Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA, 104, 6272-6277.
  • 10Koomneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annual Review of Plant Biology, 55, 141-172.

二级参考文献127

共引文献607

同被引文献196

引证文献10

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部