期刊文献+

应用分子伴侣共表达系统表达结核分枝杆菌编码蛋白 被引量:3

Co-expression of protein of M. tuberculosis with molecular chaperone
下载PDF
导出
摘要 目的研究共同表达分子伴侣能否提高结核分枝杆菌编码基因的表达效率及被表达蛋白的生物活性。方法将携带有结核分枝杆菌编码基因的表达质粒Rv3790::pET16b、Rv3791::pET16b与能够同时表达3个分子伴侣DnaK、DnaJ和GrpE的质粒pkJE7共同在大肠埃希菌BL21(DE3)表达,之后对所获得的蛋白通过聚丙烯酰胺凝胶电泳和免疫印记分析(Western Blot)检测蛋白产量,并分析蛋白的活性。以Rv3790::pET16b、Rv3791::pET16b单独在BL21(DE3)内的表达作为对照。结果与分子伴侣共表达的结核分枝杆菌编码基因相对于目的基因单独表达时获得较多的可溶性蛋白,较少的包涵体和蛋白降解;共表达的蛋白也具有相对较好的活性。结论共同表达分子伴侣能够提高某些结核分枝杆菌编码蛋白的表达效率和生物活性。 Objective To elucidate the effect of chaperones co-expression on increasing the expression of protein from M. tuberculosis encoding genes, and on enhancing biology activity of the protein expressed. Methods Co-expressing the plasmids Rv3790::pET16b and Rv3791::pET16b which harbor protein encoding gene Rv3790 and Rv3791 of Mycobacterium tuberculosis with chaperones plasmid pkJE7 which can express 3 chaperones, DnaK, DnaJ, GrpE at the same time in E. coll. BL21 (DE3). The yield of the expression was then checked by SDS-PAGE and Western Bloting. The biology activity of the expressed candidate proteins was analyzed by related activity assay. The expression system, which expressed the candidate genes alone in E. coll. BL21(DE3), was used as control. Results Compared with the control, the co-expression system could produce more soluble protein, less inclusion body and less degradation of protein. When same amount of protein was used in the activity assay, the protein from the chaperone co-expression system had higher activity than that from the non-chaperone co-expression system. Conclusion Co-expression with chaperone could increase protein expression and protein activity of M. tuberculosis.
出处 《中国防痨杂志》 CAS 2009年第2期76-79,共4页 Chinese Journal of Antituberculosis
关键词 蛋白 表达 分子伴侣 共同表达 protein expression molecular chaperone co-expression
  • 相关文献

参考文献9

  • 1Thomas JG, AylingA, Baneyx F. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli To fold or to refold [J]. Appl Biochem Biotech, 1997,66(3):197--238.
  • 2Mikusova K, Huang H, Yagi T, Holsters M, Vereeeke D, D' Haeze W, Seherman MS, Brennan PJ, McNeil MR, Criek DC. Deeaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose [J]. J Bacteriol,2005,187(23) :8020--8025.
  • 3Huang H, Seherman MS, D'Haeze W, Vereeeke D, Holsters M, Criek DC, MeNeil MR. Identification and aetive expression of the Myeobaeterium tuhereulosis gene encoding 5-phospho-{alpha}-d-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to deeapreny[phosphoryl-d-arabinose synthesis [J]. J Biol Chem,2005,280 (26) :24539--24543.
  • 4Villaverde A, Carrio MM. Protein aggregation in recombinant bacteria: biological role of inclusion bodies [J]. Biotechnol Lett,2003, 25 (17):1385--1395.
  • 5Goloubinoff P, Gatenby AA, Lorimer GH. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli [J]. Nature, 1989, 337 (6202): 44--47.
  • 6Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein [J]. Science, 2002, 295 (5561):1852-1858.
  • 7Nishihara, K, Kanemori M, Kitagawa M, Yanagi H, Yura T. Chaperone coexpression plasrnids., differential and synergistic roles of DnaK-DnaJ-GroE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Eschericia coli [J]. Appl Environ Microbiol, 1998,64(5) : 1694-- 1699.
  • 8Nishihara K, Kanemori M, Yanagi H, Yura T. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli[J]. Appl Environ Microbiol, 2000,66(3):884--889.
  • 9Hoffmann F, Rinas U. Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli[J]. Adv Biochem Eng Biotechnol, 2004, 89 : 143-- 161.

同被引文献40

  • 1Szente L, Szejtli J. Cyclodextrins as food ingredients[J]. Trends in Food Science & Technology, 2004, 15(3/4): 137-142.
  • 2Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future[J]. Nature Reviews Drug Discovery, 2004, 3(12): 1023-1035.
  • 3Uitdehaag JCM, van der Veen BA, Dijkhuizen L, et al. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the a-amylase family[J]. Enzyme and Microbial Technology, 2002, 30(3): 295-304.
  • 4Mergulhao FJM, Monteiro GA, Cabral JMS, et al. Design of bacterial vector systems for the production of recombinant proteins in Escherichia coli[J]. Journal of Microbiology and Biotechnology, 2004, 14(1): 1-14.
  • 5Kane JF, Hartley DL. Formation of recombinant protein inclusion bodies in Escherichia coli[J]. Trends in Biotechnology, 1988, 6(5): 95-101.
  • 6Mitraki A, Fane B, Haase-Pettingell C, et al. Global suppression of protein folding defects and inclusion body formation[J]. Science, 1991, 253(5015): 54-58.
  • 7Nishihara K, Kanemori M, Kitagawa M, et al. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli[J]. Applied and Environmental Microbiology, 1998, 64(5): 1694-1699.
  • 8Han RZ, Li JH, Shin H, et al. Recent advances in discovery, heterologous expression, and molecular engineering of cyclodextrin glycosyltransferase for versatile applications[J]. Biotechnology Advances, 2014, 32(2): 415-428 J.
  • 9in HH, Han NS, Kweon DH, et al. Effects of environmental factors on in vivo folding of Bacillus macerans cyclodextrin glycosyltransferase in recombinant Escherichia coli[J]. Journal of Microbiology and Biotechnology, 2001, 11(1): 92-96.
  • 10Wu J, Li ZF, Li B, et al. A new strategy for efficient secretory expression of extracellular proteins into culture medium of E. toll[J]. Journal of Biotechnology, 2008, 136(S): S719-S720.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部