期刊文献+

基于约束Jacobi基的多项式反函数逼近及应用 被引量:3

Inversion Approximation for Polynomials by the Constrained Jacobi Basis and its Application
下载PDF
导出
摘要 求解多项式反函数是CAGD中的一个基本问题.提出一种带端点Ck约束的反函数逼近算法.利用约束Jacobi基作为有效工具,推导了它与Bernstein基的转换公式,采用Bernstein多项式的升阶、乘积、积分与组合运算,给出了求解反函数系数的具体算法.该算法稳定、简易,克服了以往计算反函数的系数时每次逼近系数需全部重新计算的缺陷.最后通过具体逼近实例验证了文中算法的正确性和有效性,同时给出了它在PH曲线准弧长参数化中的应用. To solve the inverse function of polynomial is a fundamental problem in CAGD. An algorithm about approximating the inverse function with C^k constrains is proposed. By using the constrained Jacobi basis and a derived transformation formula for it to Bernstein basis, and using the degree elevation, arithmetic and composition algorithms for Bernstein polynomials, the specific method for solving the coefficients of inverse function is given. The approximation method is convenient and steady. Moreover, the defect that the corresponding coefficients must be recalculated when approximating every inverse function one by one was overcame. Finally, the experimental results show that the approximation methods are correctness and effective. As an application, generating quasi arclength parameterization of PH curves is also discussed.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第2期137-142,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60873111) 国家"九七三"重点基础研究发展计划项目(2004CB719400)
关键词 多项式的反函数 约束Jacobi多项式 BERNSTEIN基 PH曲线 准弧长参数化 inversion of polynomials the constrained Jacobi polynomial Bernstein basis PH curvequasi arc-length parameterization
  • 相关文献

参考文献3

二级参考文献9

  • 1胡晴峰,汪国昭.双曲混合多项式形式的Ball曲线[J].浙江大学学报(理学版),2004,31(6):625-630. 被引量:7
  • 2HUANGYu WANGGuozhao.Constructing a quasi-Legendre basis based on the C-Bézier basis[J].Progress in Natural Science:Materials International,2005,15(6):559-563. 被引量:5
  • 3RIDA T F.Convergent inversion approximations for polynomials in Bernstein form[J].Computer Aided Geometric Design,2000,17(2):179-196.
  • 4LI Y M,HSU V Y.Curve offsetting based on Legendre series[J].Computer Aided Geometric Design,1998,15(7):711-720.
  • 5ECK M.Degree reduction of Bézier curves[J].Computer Aided Geometric Design,1993,10(4):237-251.
  • 6CHEN Q Y,WANG G Z.A class of Bézier-like curves[J].Computer Aided Geometric Design,2003,20(1):29-39.
  • 7DAVIS P J.Interpolation and Approximation[M].New York:Dover Publications,1975.
  • 8SANCHEZ-REYES J.Inversion approximations for functions via s-power series[J].Computer Aided Geometric Design,2001,18(1):587-608.
  • 9SANCHEZ-REYES J.Applications of the s-power basis in geometry processing[J].ACM Transactions on Graphics,2000,19(1):27-55.

共引文献21

同被引文献32

  • 1李亚娟,汪国昭.Two kinds of B-basis of the algebraic hyperbolic space[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2005,6(7):750-759. 被引量:13
  • 2陈文喻,汪国昭.反函数的混合多项式逼近[J].浙江大学学报(理学版),2006,33(5):507-509. 被引量:2
  • 3王媛,康宝生.代数双曲混合H-Bézier函数及其性质[J].西北大学学报(自然科学版),2006,36(5):693-697. 被引量:11
  • 4HUANG Yu WANG GuoZhao.An orthogonal basis for the hyperbolic hybrid polynomial space[J].Science in China(Series F),2007,50(1):21-28. 被引量:4
  • 5Farin G. Curves and surfaces for CAGD: a practical guide[M]. 5th ed. San Francisco: Morgan Kaufmann Publishers, 2002.
  • 6Li Y M, Zhang X Y. Basis conversion among Bezier, Tchebyshev and Legendre [J]. Computer Aided Geometric Design, 1998, 15(6): 637-642.
  • 7Farouki R T. Legendre-Bernstein basis transformations [J]. Journal of Computational and Applied Mathematics, 2000, 119 (1): 145-160.
  • 8Rababah A. Jacobi-Bernstein basis transformation [J]. Computational Methods in Applied Mathematics, 2004, 4 (2) : 206-214.
  • 9Farouki R T, Goodman T N T, Sauer T. Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains [J].Computer Aided Geometric Design, 2003, 20(2): 209-230.
  • 10Koornwinder T H. Two-variable analogues of the classical orthogonai polynomials [M] //Askey R A. Theory and Application of Special Functions. New York: Academic Press, 1975:435-495.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部