期刊文献+

基于抽象匹配流的彩色图像配准模型 被引量:1

Color Image Registration Model Based on Abstract Matching Flow
下载PDF
导出
摘要 在抽象匹配流框架下,构造能够克服大色差问题的彩色图像配准模型.该模型中,数据项采用互相关函数作为2幅图像间的相似性度量,以解决大色差问题;正则项采用各向异性扩散滤波器约束图像演化,从而实现在演化过程中对图像特征的有效保持.扩散滤波器中的扩散系数定义为关于彩色结构张量的函数,以使图像演化能够综合各通道信息,解决了各通道所得位移场不一致而引起的色彩混迭问题.实验结果表明,文中模型对具有大色差的彩色图像能够实现有效配准. A color image registration model within the framework of abstract matching flow is proposed to deal with the problem of serious color difference between registered images. The model is composed of a data term and a regularization term. The data term employs the cross correlation as the similarity measurement between two images, in order to cope with the large color difference problem. The regularization term into which an anisotropic flow-driven diffusion is introduced, aims at preserving image features during the image evolution. The diffusion structure tensor in the diffusion coefficient function is a vector-valued structure tensor, which integrates the intensity and structure information of each channel, as well as the correlation among channels. Experimental results validate the proposed model, especially for images of large color difference.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第2期229-236,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 香港特区政府研究资助局研究项目(CUHK/4185/00E) 香港中文大学研究基金(2050345)
关键词 彩色图像配准 抽象匹配流 互相关函数 各向异性扩散 彩色结构张量 color image registration abstract matching flow cross correlation flow-driven anisotropic regularization color structure tensor
  • 相关文献

参考文献15

  • 1Umeda K, Godin G, Rioux M. Registration of range and color images using gradient constraints and range intensity images [C] //Proceedings of the 17th IEEE International Conference on Pattern Recognition, Minnesota, 2004:12-15.
  • 2Palos G, Betrouni N, Coulanges M, et al . Multimodal matching by maximization of mutual information and optical flow technique[C] //Proceedings of the 26th Annual Conference of Engineering in Medicine and Biology Society, San Francisco, 2004,: 1679-1682.
  • 3Cai L, Mei L. A robust registration and detection method for color seal verification [M] //Lecture Notes in Computer Science. Heidelberg: Springer, 2005, 3644:97-106.
  • 4Tschumperle D. PDE's based regularization of multivalued images and applications [D]. Antipolis: University of Nice-Sophia, 2002.
  • 5van de Weijer J, Gevers T, Smeulders A W M. Robust photometric invariant features from color tensor [J]. IEEE Transactions on Image Processing, 2006, 15(1):118-127.
  • 6Viola P, Wells W M. Alignment by maximization of mutual information [J]. International Journal of Computer Vision, 1997, 24(2): 137-154.
  • 7卢振泰,陈武凡.基于共生互信息量的医学图像配准[J].计算机学报,2007,30(6):1022-1027. 被引量:27
  • 8Periaswamy S, Farid H. Elastic registration in the presence of intensity variations [J]. IEEE Transactions on Medical Imaging, 2003, 22(7): 865-874.
  • 9Hermosillo G, Chefd' Hotel C, Faugeras O. Variational methods for multimodal image matching [J]. International Journal of Computer Vision, 2002, 50(3): 329-343.
  • 10Netsch T, Rosch P, van Muiswinkel A, et al. Towards real-time multi-modality 3D medical image registration [C]//Proceedings of the 8th International Conference on Computer Vision, Vancouver, 2001:718-725.

二级参考文献26

  • 1卢振泰,陈武凡.基于共生互信息量的医学图像配准[J].计算机学报,2007,30(6):1022-1027. 被引量:27
  • 2Maintz J B A,Viergever M A.A survey of medical image registration.Medical Image Analysis,1998,2(1):1-36
  • 3Brown L G.A survey of image registration techniques.ACM Computing Surveys,1992,24(4):325-376
  • 4Zitova B,Flusser J.Image registration methods:A survey.Image and Vision Computing,2003,21(11):977-1000
  • 5Maes F,Collignon A,Vandermeulen Dirk et al.Multimodality image registration by maximization of mutual information.IEEE Transactions on Medical Imaging,1997,16(2):189-198
  • 6Viola P,Wells W M.Alignment by maximization of mutual information//Proceeding of the 5th International Conference on Computer Vision.DC,USA,1995:16-23
  • 7Pluim J,Maintz J,Viergever M.Mutual information based registration of medical images:A survey.IEEE Transactions on Medical Imaging,2003,22(8):986-1004
  • 8Studholme C,Hill D L G,Hawkes D J.An overlap invariant entropy measure of 3D medical image alignment.Pattern Recognition,1999,32:71-86
  • 9Pluim J P W,Maintz J B A,Viergever M A.Image registration by maximization of combined mutual information and gradient information.IEEE Transactions on Medical Imaging,2000,19(8):809-814
  • 10Shannon C.A mathematical theory of communication.The Bell System Technical Journal,1948,27:379-423

共引文献31

同被引文献14

  • 1陈允杰,张建伟,韦志辉,夏德深,王平安.同时配准-分割脑MR图像的耦合变分模型[J].计算机辅助设计与图形学学报,2007,19(2):215-220. 被引量:6
  • 2Bansal R,Staib L,Chen Zhe,et al.Entropy-Based,Muhiple-Portal-to-3DCT Registration for Prostate Radiotherapy Using Iteratively Estimated Segmentation//Proc of the 2nd International Conference on Medical Image Computing and Computer-Assisted Intervention.London,UK,1999:567-578.
  • 3Yezzi A,Zollei L,Kapur T.A Variational Framework for Joint Segmentation and Registration//Proc of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis.Kauai,USA,2001:44 -51.
  • 4Pohl M,Fisher J,Eric W,et al.A Bayesian Model for Joint Segmentation and Registration.Neurolmagn,2006,31 (1):228-239.
  • 5Paragios N,Rousson M,Ramesh M.Knowledge-Based Registration and Segmentation of the Left Ventricle:A Level Set Approach// Proc of the 6th IEEE Workshop on Applications Computer Vision.Orlando,USA,2002:37-42.
  • 6Moelich M,Chan T.Joint Segmentation and Registration Using Logic Models.UCLA CAM Report,03 -06,Los Angeles,USA:UCLA.Mathematics Department,2003.
  • 7Vemuri B C,Ye J,Chen Y,et al.Image Registration via Level-Set Motion:Applications to Atlas-Based Segmentation.Medical Image Analysis,2003,7 (1):1-20.
  • 8Liu Jundong,Wang Yang,Liu Junhong.A Unified Framework for Segmentation-Assisted Image Registration// Proc of the 7th Asian Conference on Computer Vision.Hyderabad,india,2006:405 -414.
  • 9Wang F,Vemuri B,Eisenschek S.Joint Registration and Segmentation of Neuroanatomical Structures from Brain MRI.Academic Radiology,2006,13(9):1104 -1111.
  • 10Hermesillo G,Hotel C,Faugeras O.Variational Methods for Multimodal Image Matching.International Journal of Computer Vision,2002,50(3):329 -343.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部