期刊文献+

BTT导弹非线性自动驾驶仪最优滑模设计 被引量:1

Design of Optimal-Sliding Mode Nonlinear Autopilot for BTT Missile
下载PDF
导出
摘要 针对BTT导弹的飞行控制问题,提出了一种基于θ-D方法的最优滑模非线性自动驾驶仪设计方法。把导弹动态模型转化成一个级联的二回路系统结构,外环控制器的设计是基于θ-D近似方法的最优控制方法,内环控制器设计采用的是滑模控制方法,内环控制器所跟随的滑模面方程由外环最优控制得出。对所设计的非线性控制器进行了仿真分析,结果表明基于θ-D方法的最优滑模自动驾驶仪在非线性导弹飞行控制中具有较高的控制精度和很好的鲁棒性。 Aiming at Bank-To-Turn (BTT) missile flight control problem, a θ-D scheme based optimal sliding mode controller design method for a nonlinear autopilot was developed. The dynamic of missile was transformed to a "cascade" or two-loop structure, the outer loop was designed using a θ - D method based optimal controller. This outer loop controller generates an optimal sliding surface which is followed by a sliding mode controller in the inner loop. Simulation and analysis was performed for the nonlinear control system. Results demonstrate that the designed autopilot is provided with higher precision and better robustness in the entire missile flight envelope.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第4期1087-1090,共4页 Journal of System Simulation
基金 航空科学基金(2006ZC12004) 总装预研基金(9140A04050407JB3201)
关键词 BTT导弹 非线性自动驾驶仪 θ-D方法 最优滑模控制 BTT missile nonlinear autopilot θ- D method optimal sliding mode control
  • 相关文献

参考文献9

  • 1Yuru Xu, Jinyong. Adaptive fuzzy sliding mode controller for BTT missile [C]//2004 8^th Int. Conf. on Control, Automation, Robotics and Vision (S7803-8653). China: IEEE, 2004: 1222-1226.
  • 2Abhijit Das Tanushree. Feedback linearization for a nonlinear skid-to-tum missile model [C]// IEEE India Annual Conference (S7803-8909). USA: IEEE, 2004:314-317.
  • 3林德福,孙宝彩,祁载康.BTT导弹自动驾驶仪LQG/LTR积分控制设计[J].系统仿真学报,2007,19(4):836-839. 被引量:2
  • 4Chirl hwa Lee, Myung jin chang. Gain-scheduled state feedback control design technique for flight vehicles [J]. IEEE Transaction on Aerospace and Electronic Systems (S0191-1083), 2001, 37(1): 173-182.
  • 5Rong Xu, Umit Ozguner. Optimal sliding mode control for linear systems [C]// Proceedings of the 2006 Intemational Workshop on Variable Structure Systems (S4244-0208). Italy: IEEE, 2006: 143-148.
  • 6Garrard W L. Design of nonlinear automatic flight control systems [J]. Automatica (S0005-1098), 1977, 13(3): 497-505.
  • 7Saridis G N, Lee C G. An approximation theory of optimal control for trainable manipulators [J]. IEEE Transaction on Systems, Man, and Cybernetics (S7805-7415), 1979, SMC-9(3): 847-871.
  • 8Corey J Schumacher, Gerald C Cottrill, His-Hart Yeh. Optimal Sliding Mode Flight Control [C]// Proceedings of AIAA Guidance, Navigation and Control Conference, AIAA 99-4002. USA: AIAA, 1999: 435-443.
  • 9Ming Xin, S N Balakrishnan. A new method for suboptimal control of a class of nonlinear systems [C]// Proceedings of the IEEE International Conference on Decision and Control, (S7803-7516), 2002. USA: IEEE, 2002: 2756-2761.

二级参考文献5

  • 1Zhang Zhihong, James S, Loop Transfer Recovery for Nonminimum Phase Plants [J], IEEE Transactions on Automatic Control, 1990, 35(5):547-553.
  • 2Doyle J C. Stein G Robustness with observers [J]. IEEE Trans.Automatic Control, 1979, 24(4): 607-611.
  • 3Williams D, Friedland B. Design of an Autopilot for Bank-to-Turn Missile [C]//Proceedings of the American Control Conference, 1988.
  • 4Balas Gary, Chiang Richard. Robust Control Toolbox User's Guide[K]. Math Works, Inc., 2001.
  • 5Burl Jeffrey B, Linear Optimal Control H2 and H∞ Methods [M],ADDISON-WESLEY, Inc., 1999.

共引文献1

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部