期刊文献+

多阶段逆模型方法及在胶液生成过程中的应用

Multistage Inverse Modeling Method and Its Application in Gelatin Solution Production Process
下载PDF
导出
摘要 针对一类串联型工业大系统,提出了多阶段逆模型建模方法:将串联大系统分为若干个阶段,以产品质量指标作为过程设计的起点,用逆向推理的方法,建立各个阶段的逆模型;根据产品质量指标的要求,直接求出各个阶段的控制变量设定值。将该方法应用于胶液生成过程的软测量建模,采用多阶段建模方法和整体建模方法分别建立了基于BP神经网络的胶液生成过程逆模型,并从误差平方和MSE和命中率等方面对两种建模方法的建模精度进行了比较。结果表明,多阶段建模方法可以获得更高的建模精度;同时,具有更大的灵活性;而且逆模型方法可以根据质量指标求出控制变量设定值,更便于实际应用。 Aiming at a class of serially connected industrial system, a novel multistage inverse modeling method was presented. The large-scale system is divided into several stages. Using specified product qualities as a starting point for process design. By backward reasoning the required process conditions and the control variable set points of all stages for processing system were found. The inverse models of gelatin solution production process were established based on the BP neural network by using multistage modeling method and whole stage modeling method, and modeling accuracy comparison were made from error and hit rates. The simulation results indicate the model based on the proposed method has smaller error and higher hit rates. Meanwhile, the break down of the sub models increases the flexibility of model development and reduces the effort to change the model when the sub models change. And the required process conditions and the control variable set points of all stages for processing system were found according to specified product qualities. Thus, it is easy to be really applied. This method has been successfully applied on improving the gelatin solution production process and product quality control.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第4期1178-1181,1186,共5页 Journal of System Simulation
基金 厦门市科技计划项目(3502Z20083028) 国家自然科学基金项目(50843059) 福建省教育厅科技项目(JA08218)
关键词 多阶段建模 逆模型 软测量 胶液生成过程 BP神经网络 multistage inverse modeling inverse modeling soft sensor gelatin solution production process BPneural network
  • 相关文献

参考文献8

  • 1冯冬青,张新征,费敏锐.基于回归神经网络的氧乐果合成过程建模与仿真[J].系统仿真学报,2005,17(6):1522-1524. 被引量:4
  • 2苗青,曹广益,朱新坚.基于一种改进的RBF神经网络的直接甲醇燃料电池建模[J].系统仿真学报,2005,17(2):284-285. 被引量:3
  • 3高学金,王普,孙崇正,易建强,张亚庭,张会清.基于支持向量机的青霉素发酵过程建模[J].系统仿真学报,2006,18(7):2052-2055. 被引量:16
  • 4Shang-Ming Zhou, John Q Gan. Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modeling [J]. Fuzzy Sets and Systems (S0165-0114), 2008, 159(23): 3091-3131.
  • 5E J M Carranza, F J A van Ruitenbeek, CHecker, et al. Knowledgeguided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata [J]. International Journal of Applied Earth Observation and Geoinformation (S0303-2434), 2008, 10(3): 374-387.
  • 6Eleni Aggelogiannaki, Haralambos Sarimveis. Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models [J]. Computers & Chemical Engineering (S0098-1354), 2008, 32(6): 1225-1237.
  • 7Hadiyantoa, D. C. Esveld, R. M. Boom, et al. Product quality driven design of bakery operations using dynamic optimization [J]. Journal of Food Engineering (S0260-8774), 2008, 86(3): 399-413.
  • 8Patricia Melin, Oscar Castillo. An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory [J]. Information Sciences (S0020-0255), 2007, 177(7): 1543-1557.

二级参考文献26

  • 1Wasmus S, Kuver A. Methanol oxidation and direct methanol fuel cells: a selective review [J]. J Electroanal Chem, 1999, 461(1-2): 14-31.
  • 2Vincenzo A. Direct methanol fuel cells for mobile applications: A strategy for the future [J]. Full Cells Bulletin, 1999, 2(7): 6-8.
  • 3Dohle H, Divisek J. Jung R. Process engineering of the direct methanol fuel cell [J]. J Power Sources, 2000 86: 469-477.
  • 4Ai-Amoudi A, Zhang L. Application of radial basis function network for solar-array modeling and maximum power-point prediction [J]. IEE Pro-Gener, Transm Distrib, 2000, 147(5): 310-316
  • 5Chiu S L. Fuzzy model identification based on cluster estimation [J]. Journal of Intelligent and Fuzzy System, 1994, 2(3): 267-278.
  • 6Sundmacher K, Schultz T, Zhou S, et al. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis [J]. Chemical Engineering Science, 2001, (56): 333-341.
  • 7瓦普尼克 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8A Cabrera, A Poznyak, T Poznyak, etal. Identification of a fed-batch fermentation process: comparison of computational and laboratory experiments [J]. Bioprocess and Biosystems Engineering, 2002, 12(5):319-327.
  • 9Jimenez L, Basualdo M S, Gomez J C, Toselli L, Rosa M. Nonlinear dynamic modeling of multicomponent batch distillation: A case study [J]. Brazilian Journal of Chemical Engineering, 2002, 19(3): 307-317.
  • 10Faouzi M'Sahli, Ridha Ben Abdennour, Mekki Ksouri. Identification and Predictive Control of a Nonlinear Process Using a Parametric Volterra Model [J]. International Journal of Computational Engineering Science. 2001, 12(4): 633-651.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部