期刊文献+

有趣Web日志关联规则挖掘算法 被引量:3

Interesting association rule mining algorithm from web log data
下载PDF
导出
摘要 对Web日志关联规则挖掘算法进行了研究,普通的关联规则挖掘算法发现的规则数量太多,里面含有大量用户不感兴趣的规则,规则知识很难为用户所使用。根据网站拓扑结构和矩阵迭代技术实现了一种有趣关联规则(IMIA)算法,能够快速迭代求解任意两个页面间的关联概率,对关联规则进行有趣度评价,得出有趣度高的规则。实验结果表明,该算法是有效的,可以进一步改善网站性能,提高智能服务质量和性能,从而很好地应用到电子商务领域。 Web log association rules mining algorithms are studied. The traditional association rules mining algorithms produce too many redundant rules which users are not interested in or cannot be used effectively. According to web topology structure and a matrix iteration method, an interesting matrix iteration association rules algorithm (IMIA) is presented. It can efficiently calculate association probabilities between every two resources. It can evaluate the interest of each association rule and generate association rules with high interest. The experimental results indicate that this proposed algorithm is feasible and efficient. It is used to improve network performance, enhance quality and performance of intelligent services. Therefore, it is successfully applied to E-Commerce.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第4期1036-1038,共3页 Computer Engineering and Design
基金 天津工程师范学院科研发展基金项目(SK-JH2007001)
关键词 WEB日志 网站拓扑 矩阵迭代 概率模型 有趣关联规则 web log web topology matrix iteration probability model interesting association rules
  • 相关文献

参考文献7

  • 1Han J W, Pei J,Yin YW.Mining frequent patterns without candidate generation [C]. Proc of the 2000 ACM SIGMOD International Conference on Management of Data. USA: ACM Press, 2000:1-12.
  • 2Agrawal R, Srikant R.Fast algorithms for mining association rules[C].Proceedings of 20th Int Conf VLDB.Morgan Kaufmann Press,1994:487-499.
  • 3Zhu TS. Web usage mining for Intemet recommendation [D]. Canada: University of Alberta Edmonton,2001.
  • 4李颖基,彭宏,郑启伦,曾炜.Web日志中有趣关联规则的发现[J].计算机研究与发展,2003,40(3):435-439. 被引量:20
  • 5战立强,刘大昕,张健沛.一种基于模式树的频繁项集快速挖掘算法[J].计算机工程与应用,2007,43(11):15-16. 被引量:2
  • 6Cheng Y P.Matrix theory(In Chinese)[M].2nd Ed.Xi'an:Northwest China University of Industry Press,2000.
  • 7刘先忠.线性代数[M].2版.北京:高等教育出版社,2003.

二级参考文献10

  • 1D Qin,Z Zeng,M Paterno.Web usage mining.2001.http:∥www.comp.nus.edu.sg/~liub/Teach/cs6203/group6-references.ppt
  • 2T Zhu. Web usage mining for Internet recommendation[Ph D dissertation]. University of Alberta Edmonton, Alberta, Canada, 2001
  • 3J W Han, J Pei, Y W Yin. Mining frequent patterns without candidate generation. In: W D Chen, J Naughton, P A Bernstein eds. 2000 ACM SIGMOD Intl'l Conf on Management of Data. USA: ACM Press, 2000. 1~12
  • 4R Agrawal, R Srikant. Fast algorithms for mining association rules. In: J B Bocca, M Jarke, C Zaniolo. Proc of the 20th Int'l Conf on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann, 1994. 487~499
  • 5M S Chen, J S Park, P S Yu. Efficient data mining for path traversal patterns. Knowledge and Data Engineering, 1998, 10(2): 209~221
  • 6Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//Proc 2000 ACM-SIGMOD Int Conf Management of Data (SIGMOD' 00),Dallas,TX,2000.
  • 7Wang K,Tang L,Han J W,et al.Top down FP-Growth for association rule mining[C]//Proc of the 6th Pacific Area Conf on Knowledge Discovery and Data Mining,Taipei,2002.
  • 8Liu Gui-mei,Lu Hong-jun.AFOPT:an efficient implementation of pattern growth approach[C]//Proceedings of the IEEE ICDM Workshop on FIMI'04,Brighton,UK,2004.
  • 9Agrawal R,Srikant R.Fast algorithms for mining association rules[C]//Proceedings of the VLDB Conference,Santiago,Chile,1994.
  • 10韩家炜,孟小峰,王静,李盛恩.Web挖掘研究[J].计算机研究与发展,2001,38(4):405-414. 被引量:356

共引文献20

同被引文献27

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部