期刊文献+

Lp投影不等式与Lp质心不等式的等价性 被引量:2

Equivalence of L_p Projection Inequality and L_p Centroid Inequality
下载PDF
导出
摘要 Petty投影不等式和Busemann-Petty质心不等式是经典Brunn-Minkowshi理论的基本不等式.在最近的研究中,Lutwak,Yang,Zhang又把以上2个不等式推广到LpBrunn-Minkowshi情形中.该文的目的是建立起Lp-Petty投影不等式和LpBusemann-Petty质心不等式的等价性. Petty' s projection inequality and Busemann-Petty centroid inequality are the basic inequalities in the classical Brunn-Minkowshi theory. In the recent studies, Lutwak, Yang and Zhang generalized the above two inequalities into the circumstances of Lp Brunn-Minkowshi. The purpose of the present paper is to show equivalence of the Lp Petty projection inequality and the Lp Busemann-Petty centroid inequality.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期8-10,共3页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(10671117)
关键词 Lp投影不等式 Lp质心不等式 等价性 Lp projection inequality Lp centroid inquality equivalence
  • 相关文献

参考文献8

  • 1GARDNER R J. Geometric tomogaphy [ M ]. 2nd ed. Cambridge : Cambridge University Press, 2006 : 1-30.
  • 2LUTWAK E, YANG D, ZHANG G. Lp affine isoperimetrie inequalities [ J ]. J Differential Geom, 2000, 56 : 111 - 132.
  • 3PETTY C M. Isoperimetric problems [C ] // Proc Conf Convexity and Combinatorial Geometry, University of Oklahoma. 1972:26-41.
  • 4LUTWAK E, ZHANG G. Blaschke-Santalo inequalities [J]. J Differential Geom, 1997, 47:1-16.
  • 5CAMPI S, GRONCH! P. The Lp-Busemann-Petty centroid inequality [J]. Adv Math, 2002, 167:128-141.
  • 6LUTWAK E. The Brunn-Minkowski-Firey theory Ⅰ: mixed volumes and the Minkowski problem [ J]. J Differential Geom, 1993, 38 : 131-150.
  • 7LUTWAK E. The Brunn-Minkowski-Firey theory Ⅱ:affine and geominimal surface areas [ J ]. Advances in Math, 1996, 118:244-294.
  • 8LUTWAK E, YANG D, ZHANG G. Lp John ellisods [ J]. Proc London Math Soc, 2005, 90:497-520.

同被引文献23

  • 1赵长健,冷岗松,李小燕.凸体几何一些经典不等式的等价性[J].数学学报(中文版),2005,48(2):347-354. 被引量:5
  • 2LUTWAK E. Dual mixed volumes[J].Pacific Journal of Mathematics,1975.531-538.
  • 3FIREY W J. p-means of convex bodies[J].Mathematica Scandinavica,1962.17-24.
  • 4FIREY W J. Polar means of convex bodies and a dual to the Brunn-Minkowski theorem[J].Canadian Journal of Mathematics,1961.444-453.
  • 5LUTWAK E. The Brunn-Minkowski-Firey theory Ⅰ:mixed volume and the Minkowski problem[J].Journal of Differential Geometry,1993,(01):131-150.
  • 6LUTWAK E. The Brunn-Minkowski-Firey theory Ⅱ:affine and geominimal surface area[J].Advances in Mathematics,1996,(02):244-294.
  • 7LUTWAK E,YANG D,ZHANG G Y. Lp John ellipsoids[J].Proceedings of the London Mathematical Society,2005.497-520.
  • 8HABERL C. Lp intersection bodies[J].Advances in Mathematics,2008.2599-2624.
  • 9KOLDOBSKY A. Fourier analysis in convex geometry[M].RI:American Mathematical Society,2005.13-14.
  • 10KALTON N J,KOLDOBSKY A,YASKIN V. The geometry of Lo[J].Canadian Journal of Mathematics,2007,(05):1029-1049.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部