摘要
The callipyge (CLPG) phenotype, exhibiting polar overdominance (POD), is an inherited skeletal muscle hypertrophy described in sheep. The callipyge locus maps to the distal portion of ovine chromosome 18 within the DLKI-GTL2 region and corresponds to human chromosome 14 and mouse chromosome 12. The POD phenomenon is confirmed to the homologous region of swine chromosome 7. In order to clone and investigate the expression of porcine GTL2 gene, DNA and RNA samples from 60-day-old F1 animals, generated with reciprocal crosses between Large White and Meishan breeds and their parents, were used. The authors showed that porcine GTL2 acted as a uoncoding RNA. cDNA samples exhibited maternal expression of the gene in the heart, liver, spleen, lung, kidney, stomach, small intestine, skeletal muscle, and fat in pigs, and a unique tissue-specific expression different from that of humans and mice. These results indicated that the gene was conserved in the pig, human, mouse, and bovine. It will be of interest to further study the gene functions in muscle growth and fat deposition.
The callipyge (CLPG) phenotype, exhibiting polar overdominance (POD), is an inherited skeletal muscle hypertrophy described in sheep. The callipyge locus maps to the distal portion of ovine chromosome 18 within the DLKI-GTL2 region and corresponds to human chromosome 14 and mouse chromosome 12. The POD phenomenon is confirmed to the homologous region of swine chromosome 7. In order to clone and investigate the expression of porcine GTL2 gene, DNA and RNA samples from 60-day-old F1 animals, generated with reciprocal crosses between Large White and Meishan breeds and their parents, were used. The authors showed that porcine GTL2 acted as a uoncoding RNA. cDNA samples exhibited maternal expression of the gene in the heart, liver, spleen, lung, kidney, stomach, small intestine, skeletal muscle, and fat in pigs, and a unique tissue-specific expression different from that of humans and mice. These results indicated that the gene was conserved in the pig, human, mouse, and bovine. It will be of interest to further study the gene functions in muscle growth and fat deposition.
基金
supported by theNational Natural Science Foundation of China(30571331).