期刊文献+

MIMO雷达约束总体最小二乘改进算法 被引量:2

Constrictive total least square improved algorithm in MIMO radars
下载PDF
导出
摘要 针对多输入多输出MIMO雷达目标定位系统中基于最小二乘算法的AOA定位精度低的缺点,分析出造成这一缺点的原因是系数矩阵存在误差。进而利用系数矩阵误差存在相关性的特点,提出用约束总体最小二乘法进行目标定位,推导了定位均方误差公式。计算机仿真证明该方法比普通最小二乘法具有更好的定位性能。 In MIMO (multi-input multi-output) radars, the precision of AOA(angle of arrival) position location through the least square algorithm is low. An analysis of this shortcoming is given. The analysis shows that the bad performance results from the fact that the coefficient matrix has errors. And a method based on the constrictive total least square algorithm, which exploits the correlation among coefficient matrix errors, is pro- posed. The mean-squareerror (MSE) of the estimated position based on this method is analyzed. Simulation re- sults show that the performance of the proposed method is better than the least square one. Keywords.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第2期319-322,共4页 Systems Engineering and Electronics
基金 教育部重点项目(107102) 国家部委预研重点基金项目(9140A07010106KG0126)资助课题
关键词 MIMO雷达 约束总体最小二乘 AOA 定位 MIMO radar constrained total least square, AOA position location
  • 相关文献

参考文献8

  • 1Bekkerman I, Joseph T. Target detection and localization using MIMO radars and sonars[J]. IEEE Trans. on Signal Processing, 2006,54(10),3873 - 3883.
  • 2Fishier E, Haimovich A, Blum R, et al. Performance of MIMO radar systems: Advantages of angular diversity[C]//Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, 2004, 305 - 309.
  • 3Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar and imaging: degrees offreedom and resolution[C]// Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers, 2003 (1) :54 - 59.
  • 4Li Cong, Zhuang Wei-hua. Hybrid TDOA/AOA mobile user location for wideband CDMA cellular system[J]. IEEE Trans. on Wireless Communications, 2002,18(3) :439 - 447.
  • 5Kolodziej K W, Hjelm J. Local positioning systems; LBS applications and services[M]. London: CRC/Taylor&Francis, 2006.
  • 6Tremoiso L E, Carde J P. Target motion analys with multiple arrays: Performance analysis [J]. IEEE Trans. on Aerospace and Electronic Systems, 1996,32(3) : 1030 - 1045.
  • 7ManolakisDimitrisG.统计与自适应信号处理[M].北京:电子工业出版社,2003.
  • 8Abatzoglos T J, Mendel J M, Harada G A. The constrained total least squares technique and its applications to harmonic superresolution[J]. IEEE Trans. on Signal Processing,1991, 39:1070 - 1087.

同被引文献20

  • 1Sammartino P F,Baker C J , Griffiths H D. Frequency diverseMIMO techniques for radar[J], IEEE Trans, on Aerospace andElectronic Systems ,2013. 49(1): 201 - 222.
  • 2Krieger G. MIMO SAR: opportunities and pitfalls[J]. IEEETrans, on Geoscience and Remote.2014,52(5) :2628 - 2645.
  • 3Friedlander B. On transmit beamforming for MIMO radar[J].IEEE Trans, on Aerospace and Electronic Systems , 2012, 48(4): 3376 - 3388.
  • 4Antonio S G,Fuhrmann D R, Robey F C. MIMO radar ambigu-ity functions[J]. IEEE Journal Selected Topics Signal Process-ing ,2007, 1(1): 167 - 177.
  • 5Li J, Stoica P. MIMO radar signal processing [M]. NewJersey: Wiley, 2009.
  • 6Paulraj A, Nabar R, Gore D. Introduction to space-time wire-less communications1st ed. Cambridge: Cambridge Uni-versity Press, 2003.
  • 7Yang Y, Blum R S. Minimax robust MIMO radar waveform de-sign[J]. IEEE Journal Selected Areas Communications , 2007,1(1): 147 - 155.
  • 8Grossi E,Lops M, Venturino L. Robust waveform design forMIMO radars[J]. IEEE Trans, on Signal Processing , 2011,59(7): 3262 - 3271.
  • 9Chung P J, Du H Q,Gondzio J. A probabilistic constraint ap-proach for robust transmit l)eamforming with imperfect channelinformation[J]. IEEE Trans, on Signal Processing ? 2011,59(6) : 2773 - 2782.
  • 10Zhou S,Giannakis G B. Optimal transmitter eigen-beamformingand space-time blocking based on channel mean feedback[J]. IEEETrans. on Signal Processing , 2002,50( 10) : 2599 - 2613.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部