期刊文献+

基于高斯比例混合模型图像Curvelet域去噪

Image Denoising Based on Gaussian Scale Mixtures in the Curvelet Domain
下载PDF
导出
摘要 提出了一种基于高斯比例混合模型的图像Curvelet域去噪算法,改善了图像的去噪效果。首先对图像进行Curvelet变换,然后建立系数邻域的高斯比例混合模型,最后在模型基础上用贝叶斯最小二乘估计方法对系数进行估计。算法有效结合了Curvelet变换对图像边缘的高效表示能力和高斯比例混合模型对邻域系数相关性的概括能力。实验结果表明,在主观视觉上,该算法对图像边缘进行了很好的保护;在峰值信噪比上较其他算法也有所改善;特别是对纹理细节比较丰富的图像,去噪效果更加明显。 A new method using Gaussian Scales Mixtures in the Curvelet domain is proposed for image denoising. The Curvelet local coefficient model is first built using Gaussian Scale Mixtures. Then, the coefficients are estimated using Bayes least squares estimator. This algorithm combines the merits of Curvelet for image edge representation and Gaussian Scale Mixtures for capturing correlation of local coefficients. Some numerical experiments show the effectiveness of our method for image donoising, especially, for texture and detail predominated images.
作者 黄华 王孝通
出处 《科技导报》 CAS CSCD 北大核心 2009年第3期31-34,共4页 Science & Technology Review
基金 国家自然科学基金项目(60473141)
关键词 图像去噪 CURVELET变换 高斯比例混合 Image denoising Curvelet transform Gaussian scale mixtures
  • 相关文献

参考文献12

  • 1Chen X, Schmitt F. Surface modeling of range data by constrained triangulation[J]. Computer Aided Design, 1994, 26(8): 632-645.
  • 2Gonzalez R C.数字图像处理[M].2版.北泵:电子工业出版社,2005.
  • 3DO M N. Directional muhiresolution image representation [D]. Lausanne: School of Computer and Communication Sciences, Swiss Federal Institute of Technology, 2001.
  • 4Starck J L, Donoho D L, Camles E J. Very high quality image restoration by combining wavelets and Curvelets [C]//46SPIE Annual Meeting, Conference on Signal and Image Processing, 2001: 9-16.
  • 5金海燕,焦李成,刘芳.基于Curvelet域隐马尔可夫树模型的SAR图像去噪[J].计算机学报,2007,30(3):491-497. 被引量:22
  • 6Rabbani H, Vafadust M, Gazor S. Image denoising in Curvelet transform domain using Gaussian mixture model with local parameters for distribution of noise-free coefficients [C]//4th IEEE/EMBS International Summer School and Symposium, Cambridge, 2007: 57-60.
  • 7何劲,李宏伟,张帆.基于Curvelet变换的图像消噪[J].现代电子技术,2008,31(2):140-141. 被引量:3
  • 8Box G E P, Tiao G C. Bayesian inference in statistical analysis[M]. Wiley InterScience Publisher, 1992.
  • 9Chang S G, Yu Bin, Vetterli M. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Transaction on Image Processing, 2000, 9(9): 1532-1546.
  • 10Portilla J, Strela V, Wainwrigh M J, et al. hnage denoisng using Gaussian scale mixtures in the wavelet domain [J]. 1EEE Transaction on Image Processing, 2003, 12(11): 1338-1351.

二级参考文献46

  • 1倪林,Y.Miao.一种更适合图像处理的多尺度变换——Curvelet变换[J].计算机工程与应用,2004,40(28):21-26. 被引量:17
  • 2李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662. 被引量:89
  • 3[1]Mukherjee J, Parthasarathi R, Goyal S. Markov random field processing for color demosaicing [J ]. Pattern Recognition Letters, 2001, 22(3): 339~351.
  • 4[2]Jain A K. Fundamentals of digital image processing [M].Englewood cliffs, N J, USA: Prentice-Hall, 1989.
  • 5[3]Cok D R. Reconstruction of CCD images using template matching[A]. In: Proc. of international Science and Technology (IS&T) 's 47th Annual Conference/International Congress on Imaging Science (ICPS) [C], Rochester N J, USA, 1994: 380 ~385.
  • 6[4]Pei S C, Tam I K. Effective color interpolation in CCD color filter array using signal correlation [A]. In: Proceeding of International Conference on Image Processing [C], 2000,3: 488~491.
  • 7[5]Li Xin, Orchard M T. New edge-directed interpolation [J].IEEE Trans. on Image Processing, 2001, 10(10): 1521~ 1527.
  • 8[6]Kimmel R. Demosaicing: image reconstruction from color CCD samples [J]. IEEE Transactions on Image Processing, 1999,8(9): 1221~1228.
  • 9[7]Hut B S, Kang M G. High definition color interpolation scheme for progressive scan CCD image sensor[J]. IEEE Transactions on Consumer Electronic, 2001, 47(1): 179~186.
  • 10[8]Gupta M R, Chen T. Vector color filter array demosaicing[J].Proceedings of SPIE on sensors and camera systems for scientific, industrial and digital photography applications Ⅱ ,2001, 4306: 374~382.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部