期刊文献+

基于广义熵原理的生态系统演化动力学 被引量:3

Ecosystem Evolution Dynamics Based on Generalized Entropy Principle
下载PDF
导出
摘要 生态系统作为由大量组元组成的典型复杂开放系统,其演化动力学是当前学术界的研究热点和难点。本文定义了生态系统的"广义熵",指出控制生态系统演化动力学的物理学法则是"最大广义熵原理",即系统总是寻找一种优化过程使得在给定的约束或代价下广义熵最大,即总是使自身得到最大限度的发展。基于此原理导出了有序结构形成和演化的基本方程,并结合植被生态系统的案例数值模拟了有序结构形成和演化的动力学过程,由此形成了研究具体生态系统演化动力学的新方法。新方法的提出也为解决一般化的生态系统演化问题提供了从机理到具体量化分析的完整框架。 Ecosystems are typical complex systems with a great number of elements, whose study is a hot topic in sciences and is very difficult. The paper defines a generalized entropy for ecosystems. Physical laws for the evolution dynamics of ecosystem are expressed as the Maximum Generalized Entropy Principle (MGEP), that is to say, every ecosystem always follows an optimization process so that the generalized ~ntropy of the whole ecosystem is maximal under given constraints, i.e., elements always tend most freely to expand themselves. Based on this principle, the basic equations of structural formation and evolution are derived, and a simulation method is proposed to reveal the dynamics of structural formation and evolvement. Finally a new framework for studying vegetation ecosystems is obtained, which can be used to deal with the problems of structural formation and evolution for general complex ecosystems.
出处 《科技导报》 CAS CSCD 北大核心 2009年第4期36-41,共6页 Science & Technology Review
基金 国家自然科学基金项目(50406018) 国家重点基础研究发展计划(973计划)项目(2007CB714101)
关键词 生态系统 动力学 植被 最大广义熵原理 ecosystem entropy dynamics vegetation MGEP
  • 相关文献

参考文献23

  • 1冯綮一,柴立和.基于非平衡统计力学的生长原理[J].科技导报,2008,26(4):80-86. 被引量:3
  • 2Rietkerk M, Dekker S C, de Ruiter P C, et al. Self-organized patchiness and catastrophic shifts in ecosystems [J]. Science, 2004, 305 (5692): 1926-1929.
  • 3Gallagher R, Appenzeller T. Beyond reductionism[J]. Science, 1999, 284 (5411): 87-109.
  • 4Odum H T. Self-organization, transformity, and information [J]. Science, 1998, 242(4882): 1132-1139.
  • 5Loreau M. Consumers as maximizers of matter and energy flow in ecosystems[J]. Am Nat,1995, 145(1): 22-42.
  • 6Schneider E D, Kay J J. Life as a manifestation of the second law of thermodynamics[J]. Math Comput Modeling, 1994, 19(6-8): 25-48.
  • 7Kondepudi D K, Prigogine I. Modem thermodynamics: from Heat engines to dissipative processes[M]. London: Wiley, 1998.
  • 8Dewar R C. Maximum entropy production and the fluctuation theorem[J]. Journal of Physics A-Mathematical and General, 2005, 38 (21): L371- L381.
  • 9Whitfield J. Order out of chaos[J]. Nature, 2005, 436(7053): 905-907.
  • 10Martyushev L M, Seleznev V D. Maximum entropy production principle in physics, chemistry and bfology[J]. Physics Reports-Review Section of Physics Letters, 2006, 426(1): 1-45.

二级参考文献19

共引文献202

同被引文献55

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部