期刊文献+

简支功能梯度变厚度梁的弹性力学解 被引量:2

Elasticity Solution of Simply-supported Functionally Graded Beams with Variable Thickness
下载PDF
导出
摘要 该文假设弹性模量为沿厚度变化的指数函数,泊松比为常数,利用平面应力问题的基本方程,导出满足控制微分方程和两端简支边界条件的位移函数的一般解,对上下表面的边界方程作傅里叶级数展开确定待定系数,结果具有很好的收敛性,精度可达三位有效数字。考察了弹性模量变化对功能梯度梁位移和应力的影响,为检验其它功能梯度梁近似理论和数值结果的有效性提供了依据。该文的方法可应用于对应力分析有较高精度要求的航空工程以及微型机械仪器设计等工程。 In this paper, the Young's modulus is graded through the thickness following the exponential-law and the Poisson's ratio keeps constant. According to the governing equations of plane stress problems, the general expressions of displacements, which exactly satisfy the governing differ- ential equations and the simply-supported boundary conditions at two ends of the beam, are deduced. The unknown coefficients in the solution are determined by using the Fourier sinusoidal series expansion to the boundary equations on the upper and lower surfaces of the beams. The excellent convergence of the solution is demonstrated. The results are accurately up to the third significant digit. The effect of the Young's modulus varying rules on the displacements and stresses of functionally graded beams is investigated. The proposed elasticity solution can be used to assess the validity of various approximate solutions and numerical methods for functionally graded beams. It is applicable in aerospace engineering and other projects with highly accurate demand on stress analysis such as the design of micro-mechanical apparatus.
作者 徐业鹏 周叮
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2009年第1期132-136,共5页 Journal of Nanjing University of Science and Technology
基金 南京理工大学博士研究生创新基金
关键词 功能梯度材料 变厚度 傅里叶展开 弹性力学解 beams functionally graded materials variable thickness Fourier expansion elasticity solutions
  • 相关文献

参考文献6

  • 1Hirai T, Chen L. Recent and prospective development of functionally graded materials in Japan[J]. Materials Science Forum, 1999, 308 - 311 : 509 - 514.
  • 2Sankar B V. An elasticity solution for functionally graded beams [ J ]. Composites Science and Technology, 2001, 61:689-696.
  • 3仲政,于涛.功能梯度悬臂梁弯曲问题的解析解[J].同济大学学报(自然科学版),2006,34(4):443-447. 被引量:25
  • 4于涛,仲政.均布荷载作用下功能梯度悬臂梁弯曲问题的解析解[J].固体力学学报,2006,27(1):15-20. 被引量:32
  • 5Ying J, Lu C F, Chen W Q. Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations [ J ]. Composite Structures, 2008, 84:209-219.
  • 6Ding H J, Huang D J, Chen W Q. Elasticity solution for plane anisotropic functionally graded beams [ J ]. International Journal of Solids and Structures, 2007, 44 : 176 - 196.

二级参考文献22

  • 1吴瑞安 仲政 金波.功能梯度压电材料矩形板的三维分析[J].固体力学学报,2002,23:43-49.
  • 2Hirai T,Chen L.Recent and prospective development of functionally graded materials in Japan.Materials Science Forum,1999,308~311:509~514
  • 3Almajid A,Taya M,Hudnut S.Analysis of out-of-plane displacement and stress field in a piezocomposite plate with functionally graded microstructure.Int J Solid Struct,2001,38:3377~3391
  • 4Wu X H,Chen C Q,Shen Y P,Tian X G.A high order theory for functionally graded piezoelectric shells.Int J Solid Struct,2002,39:5325~5344
  • 5Chen W Q,Ding H J.On free vibration of a functionally graded piezoelectric rectangular plate.Acta Mechanica,2002,153:207~216
  • 6Tanigawa Y,Ootao Y,Kawamura R.Thermal bending of laminated composite rectangular plates and nonhomogeneous plates due to partial heating.Journal of Thermal Stresses,1991,14:285~308
  • 7Rogers T G,Watson P,Spencer A J M.An exact three-dimensional solution for normal loading of inhomogeneous and laminated anisotropic elastic plates of moderate thickness.Proc R Soc Lond A,1992,437:199~213
  • 8Rogers T G,Watson P,Spencer A J M.Exact three-dimensional elasticity solutions for bending of moderately thick inhomogeneous and laminated strips under normal pressure.Int J Solids Struct,1995,32:1659~1673
  • 9Zhong Z,Shang E T.Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate.Int J Solid Struct,2003,40:5335-5352
  • 10Sankar B V.An elasticity solution for functionally graded beams.Composites Science and Technology,2001,61:689~696

共引文献41

同被引文献23

  • 1王建新,胡旭辉,王雷.碳纤维布加固钢筋混凝土梁变形计算分析[J].山西建筑,2005,31(21):82-83. 被引量:2
  • 2吕朝锋,陈伟球,仲政.功能梯度厚梁的二维热弹性力学解[J].中国科学(G辑),2006,36(4):384-392. 被引量:6
  • 3王云丹.预应力碳纤维加固钢筋混凝土梁方案讨论[J].广州建筑,2007,35(2):21-23. 被引量:2
  • 4Xu Y P,Zhou D.Three-dimensional elasticity solutionfor simply supported rectangular plates with variablethickness. Journal of Strain Analysis for Engi-neering Design . 2008
  • 5Xu Y P,Zhou D.Three-dimensional elasticity solution for simply-supported functionally graded rectangular plates with variable thickness. Composite Structures . 2009
  • 6Nowacki W.Thermoelasticity. . 1952
  • 7Xu Y P,Zhou D.Elasticity Solution of Multi-span Beams with Variable Thickness under Static Loads. Journal of Applied Mathematics . 2009
  • 8A. Bilotta, C. Faella, E. Martinelli, et al. Indirect Identification Method of Bilinear Interface Laws for FRP Bonded on a Concrete Substrate[ J ]. Journal of Composites for Construction, 2012, 16 : 171-184.
  • 9Sankar B V. An elasticity solution for functionally graded beams [J]. Composites Science and Technology, 2001, 61: 689-696.
  • 10Zhu H, Sankar B V. A combined Fourier-Galerkin method for the analysis of functionally graded beams [ J ]. Journal of Applied Me- chanics, 2004, 71(3) : 421-424.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部