期刊文献+

基于矩阵分解的有限几何LDPC码的研究 被引量:2

Research of construction algorithm of finite geometry LDPC codes based on matrix decomposition
下载PDF
导出
摘要 随机构造的LDPC(low density parity check codes)码长的增加,所需存储空间过大,编码复杂度过高.针对该问题,研究了具有代数结构的有限几何LDPC码.基于有限域几何空间的点和线来构造校验矩阵,并通过矩阵行列分解得到不同码率、码长的非规则QC-LDPC码.该类LDPC码是准循环码,其编码复杂度与码长成线性关系,对应的Tanner图没有4环存在.仿真结果表明:MSK调制、AWGN信道条件下,该类码与类似参数的随机码相比较,当信道误码率为10-6时,译码增益约为0.05~0.15dB. With the growth of length, random LDPC (low density parity check) codes need large memory to storage the matrixes and have high encoding complexity. In this paper, in order to solve the problems, the algebraic methods based on finite geometry are researched. The parity check matrixes are constructed by the points and lines of finite geometries. The technique of matrix decomposition is used to get irregular QC-LDPC codes with various rates and code lengths. These codes are quasi-cyclic codes and can be encoded with low complexity with a linear relationship to code length. They also have Tanner graphs free of 4-cycles. The simulation results indicate: in the condition of MSK modulation and AWGN channel, these codes have decoding performance gains about 0.05 to 0.15dB when bit error rate is 10^-6 compared with random LDPC codes with similar parameters.
出处 《应用科技》 CAS 2009年第2期16-19,共4页 Applied Science and Technology
基金 国家基础研究基金资助项目.
关键词 有限几何LDPC码 矩阵行列分解 QC-LDPC码 finite geometry LDPC codes matrix decomposition QC-LDPC codes
  • 相关文献

参考文献10

  • 1GALLAGER R G. Low density parity check codes [ J ]. IEEE Transactions on Information Theory, 1962, 8 ( 3 ) : 208 -220.
  • 2CAMPELLO J, MODHA D S, RAJAGOPALAN S. Design LDPC codes using bit-filling [ C ]// IEEE International Conference on Communications. Helsinki, 2001 : 55-59.
  • 3HU X Y, ELEFFHERIOU E, ARNOLD D M. Regular and irregular progressive edge-growth tanner graphs [ J ]. IEEE Trans on Inform Theory, 2005, 51( 1 ): 995-1001.
  • 4KOU Y, LIN S, FOSSORIER M P C. Low density parity check codes based on finite geometries: a rediscovery and new results [ J ]. IEEE Transactions on Information Theory, 2001, 47(7) : 2711-2736.
  • 5TANG H, XU J, LIN S. Codes on finite geometries [ J]. IEEE Transactions on Information Theory, 2005, 51 (2) : 572-596.
  • 6XU Jun, CHEN Lei, LIN Shu. Construction of regular and irregular LDPC codes: geometry decomposition and masking[J]. IEEE Transactions on Information Theory, 2007, 53(1) : 121-134.
  • 7AMMAR B, HONARY B, KOU Y. Construction of lowdensity parity-check codes based on balanced incomplete block designs [ J ]. IEEE Transactions on Information Theory, 2004, 50(6) : 1257-1268.
  • 8文红,胡飞,靳蕃,段辉勇.基于光正交码的不规则LDPC码[J].西南交通大学学报,2004,39(5):665-669. 被引量:1
  • 9FOSSORIER M P. Quasi-cyclic low-density parity-check codes from circulant permutation matrices [ J ]. IEEE Transaction on Information Theory, 2004, 50 (8) : 1788- 1793.
  • 10LUBY M, MIZENMACHER M, SHOKROLLAHI M A. Spielman improved low density parity check codes using irregular graphs [ J ]. IEEE Trans on Information Theory, 2001, 47(2) : 285-298.

二级参考文献10

  • 1Gallager R G. Low density parity check codes [ J ]. IRE Trans on Information Theory, 1962, 8 (1) : 21-28.
  • 2Mackay D J C, Neal R M. Near shannon limit performance of low density parity check codes[ J ]. Electronic Letters, 1996,32(18): 1 645-1 646.
  • 3Mackay D J C. Good error correcting codes based on very spare matrices[J]. IEEE Trans on Information Theory, 1999, 45(2): 399-431.
  • 4Luby M G, Mitzenmacher M, Shokrollahi M A, et al. Spielman improved low density parity check codes using irregular graphs[J]. IEEE Trans on Information Theory, 2001, 47 (2): 285-298.
  • 5Mackay D J C, Davey M C. Evaluation of gallager codes for short block length and high rate application [ A]. Proc of IMA workshop on Codes, Systems and Graphical models[C]. New York: 2000. 113-130.
  • 6Johnson S J, Weller S R. Resolvable 2-Design for regular low density parity-check codes [ J ]. IEEE Trans on Communications, 2003, 51(9): 1 413-1 419.
  • 7Ammar B, Honary B, Kou Y, et al. Construction of low desity parity check codes: a combinatoric design approach [ A ].Proc of ISIT2002 [ C ]. Lansanne Switzerlands, 2002. 311.
  • 8Johnson S J, Steven R. Weller. A family of irregular LDPC codes with low encoding complexity [ J ]. IEEE Communications letters, 2003, 7(2): 79-81.
  • 9Chang Y X, Ryoh F H, Miao Y. Combinatorial constructions of optical orthogonal codes with weight 4 [ J ]. IEEE Trans on Information Theory, 2003,49 (5): 1 283-1 292.
  • 10Martirosyan S, Vinck A J H, A construction for optical orthogonal codes with correlation 1 [ J ]. IEICE Trans Fundamentals,2002, E85-A(1): 269-272.

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部