期刊文献+

一种新的DK-L人脸识别算法研究

New algorithm of DK-L face recognition
下载PDF
导出
摘要 人脸识别是计算机视觉和模式识别领域的一个活跃课题,有着十分广泛的应用前景.主要研究了人脸识别技术中的人脸特征提取和特征比对技术.在特征分类中,距离测量选择了最佳距离度量最近邻法,提出了一种新颖的测量方法——优中选优,可以使分类器的设计更加简洁、有效,使用较少的特征向量数目就能取得较高的识别率.仿真结果表明了该方法的有效性. The face recognition is an active subject in the fields of computer vision and pattern recognition, having a wide range of potential applications. This thesis focuses on the problems of face feature extraction and face compare in face recognition technology. In the feature classification mentioned, the method of the shortest distance, and the nearest neighbor rule are used in distance measurement. The algorithm proposes a novel method of measurement-optimization-selecting the best from the good ones, the Classifier in this algorithm can be simplified to make it more compact and effective, and higher correct recognition rate can be gained using less number of feature vectors. The effectiveness of the approach is experimentally demonstrated.
出处 《应用科技》 CAS 2009年第2期42-45,共4页 Applied Science and Technology
关键词 人脸识别 特征提取 K-L变换 主分量分析 优中选优 face recognition feature extraction K-L transform optimization
  • 相关文献

参考文献4

二级参考文献6

  • 1[1]Turk M, Pentland A. Eigenfaces for recognition[J]. J Cognitive Neuroscience, 1991,3(1):71-86.
  • 2[2]Swets D L, Weng J. Using discriminant eigenfeatures for image retrieval[J]. IEEE Trans on Pattarn Analysis and Machine Intelligence, 1996,18:831-836.
  • 3[3]Peter N Belhumeur, Joao P Hespanha, David J Kriegman. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19:711-720.
  • 4[4]Liu C, Wechsler H. Enhanced fisher linear discriminant models for face recognition[A]. 14th International Conference on Pattern Recognition, ICPR'98[C]. 1998.17-20.
  • 5[5]Liu C, Wechsler H. Robust coding schemes for indexing and retrieval from large face database[J]. IEEE Trans Image Processing, 2000,9(1):132-137.
  • 6蔡国廉,子空间法模式识别(译),1987年

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部