期刊文献+

KPCA-RVM组合建模方法及其在软测量中的应用 被引量:2

KPCA-RVM Modeling Method and Its Application for Soft Sensor
下载PDF
导出
摘要 提出了一种核主元分析(KPCA)和关联向量机(RVM)相结合的组合建模方法。KPCA-RVM采用KPCA对原始自变量进行非线性变换并提取主成分,形成特征自变量;采用RVM,对KPCA变换后的样本数据进行回归建模,并根据模型的预报能力自适应的确定参与回归的最佳特征变量个数,消除冗余信息干扰,获得强非线性表达能力且预报性能良好的模型。并将KPCA-RVM应用于PTA装置对羧基苯甲醛(4-CBA)含量的软测量建模,结果表明该方法预测精度高于PCA-RVM和RVM。 A novel modeling method integrated KPCA with RVM (KPCA) was employed to identify the principal components from the was proposed. The kernel primary component analysis nonlinear transform data of independent variables, which were regarded as character variables. Regression between character variables and dependent variables was done based on RVM, and the optimal number of -the character variables was adaptively determined according to the generalization performance of the regression model. Thus, KPCA-RVM method could eliminate the disturbance of redundant information and achieve the best nonlinear model with good generalization performance. The method of KPCA-RVM was demonstrated by a 4-CBA's content soft-sensing of PTA. Simulation results show this method is effective and the performance is better than those of PCA-RVM and RVM.
出处 《石油化工高等学校学报》 CAS 2009年第1期82-85,共4页 Journal of Petrochemical Universities
基金 国家自然科学基金(20506003 20776042) 国家863项目(2007AA04Z164) 国家杰出青年科学基金(60625302)
关键词 核主元分析 关联向量机 软测量 对羧基苯甲醛 Kernel PCA Relevance vector machine Soft sensor 4- earbexybenzaldehyde
  • 相关文献

参考文献9

  • 1Tipping M E. Sparse bayesian learning and the relevance vector machine [J]. Journal of machine learning research, 2001, 1(3):211-244.
  • 2Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as kernel eigenvalue problem [J]. Neural computation, 1998, 10(5): 1299-1319.
  • 3王华忠,俞金寿.核函数方法及其在过程控制中的应用[J].石油化工自动化,2005,41(1):25-30. 被引量:12
  • 4王华忠,俞金寿.基于核函数主元分析的软测量建模方法及应用[J].华东理工大学学报(自然科学版),2004,30(5):567-570. 被引量:9
  • 5MacKay. Bayesian interpolation [J]. Neural computation, 1992, 4(3): 415-447.
  • 6Cao G, Pisu M, Morbidelli M. A lumped kinetic model for liquid-phase catalytic oxidation of p-xylene to terephthalic acid [J]. Chemical engineering science, 1994, 49(24B), 5775-5788.
  • 7Yan Xuefeng, Du Wenli, Qian Feng. Development of a kinetic model for industrial oxidation of p-xylene by RBF-PLS andCGA[J]. AIChEjournal, 2004, 50(6), 1169-1176.
  • 8Wang Qinbo, Li Xi, Wang Lijun, et al. Kinetics of p-xylene liquid-phase catalytic oxidation to terephthalic acid [J]. Ind. eng. chem. res. , 2005, 44(2), 261-266.
  • 9Cao G, Servida A, Pisu M. Kinetics of p-xylene liquid-phase catalytic oxidation [J]. AIChE J. , 1994, 40(7), 1156 -1166.

二级参考文献26

  • 1王华忠,俞金寿.基于核函数主元分析的软测量建模方法及应用[J].华东理工大学学报(自然科学版),2004,30(5):567-570. 被引量:9
  • 2孙宗海.支持向量机及其在控制中的应用研究[M].浙江:浙江大学信息科学与工程学院,2003..
  • 3Frank B E,Friedman J H. A statistical view of some chemometrics regression tools. Technometrics, 1993, 35 (2): 109 ~135.
  • 4Qin S J, McAvoy T J, Nonlinear PLS modeling using neural networks. Computers Chem. Engng. 1992,16(4) :379~391.
  • 5Wang Huazhong,Yu Jinshou. Application Study on Nonlinear Dynamic FIR Modeling Using Hybrid SVM-PLS Method,In:Chu Jian(eds),Proceedings of the 5thworld conference on intelligent control and automation ( WCICA ' 05 ), 2004, Hangzhou,3479~3482.
  • 6Martin E B, Morris J, Zhang J. Process performance monitoring using multivariate statistical process control. IEE Proc Control Theory, 1996,143(2): 132~ 144.
  • 7Kramer M A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J, 1991,37 (2): 233 ~243.
  • 8Vapnik V N. The nature of Statistical Learning Theory. NY:Spring-Verlag, 1998.?A
  • 9Mller K-R,Mika S,Ritsch G,et al. An introduction to kernelbased learning algorithms. IEEE transactions on neural networks,2001,12(2) : 181~202.
  • 10Suykens J K A,Gestel T V ,Brabanter,J D et al. Least SquaresSupport Vector Machines. World Scientific Publishing Co. Pte.Ltd. Singapore, 2002.

共引文献19

同被引文献21

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部