期刊文献+

Hook-Jeveese搜索法和改进的微粒群算法的混合算法 被引量:1

A Hybrid Hook-Jeveese Search and Improved Particle Swarm Optimization Method
下载PDF
导出
摘要 提出一个求解无约束最优化问题的新的混合算法Hooke-Jeeves搜索法和惯性权重线性调整的局部收缩的微粒群算法的混合算法。该算法不需要计算梯度,容易应用于实际问题中。通过对微粒群算法的修正,使混合算法具有更加精确和快速的收敛性。主要目的是通过加入混合策略证明标准微粒群算法是能够被改进的。利用6个基准测试函数进行仿真计算比较,计算结果表明,新混合算法在求解质量和收敛速率上都优于其它的两种算法(PSO和与混沌相结合的PSO算法)。仿真结果表明,新算法是求解无约束最优化问题的一个高效的算法。 The hybrid algorithm based on the Hook-Jeeves search method and the local constriction approach particle swarm optimization (PSO) with linear varying inertia weight (HJ-LLPSO) for unconstrained optimization was put forward. HJ- LLPSO is very easy to implement in practice since it does not require gradient computation. The modification of the parricide swarm optimization intends to produce faster and more accurate convergence. The main purpose is to demonstrate how the standard particle swarm optimizers can be improved by incorporating a hybrid strategy. In a suit of 6 test function problems taken from the literature, computational results via a comprehensive experimental study show that the hybrid HJ-LLPSO approach outperforms other two relevant search techniques (i. e. , the original PSO and PSO combined with chaos) in terms of solution quality and convergence rate. As evidenced by the overall assessment based on computational experience, the new algorithm is extremely effective and efficient at locating best-practice optimal solutions for, unconstrained optimization.
作者 苗晨 刘国志
出处 《辽宁石油化工大学学报》 CAS 2009年第1期87-90,共4页 Journal of Liaoning Petrochemical University
基金 辽宁省自然科学基金资助(2004F100)
关键词 Hook-Jeeves搜索法 微粒群算法 无约束最优化 Hook-Jeeves search method Particle swarm optimization Unconstrained optimization
  • 相关文献

参考文献11

  • 1Kennedy J, Eberhart R. Particle swarm optimization [C]//EEE international conference on neural networks, Australia WA:[s. n. ]: 1995.
  • 2Eberhart R, Shi Y. Particle swarm optimization: development applications and resources [C]// Proceedings of the 2001 congress on evolutionary computation, Seoul:[s. n. ],2001.
  • 3Shi Y, Eberhart R. Empirical study of particle swarm optimization [C]//Proceedings of the 1999 congress on evolutionary computation, Washington:[s. n. ], 1999.
  • 4Shi Y, Eberhart R. A modified particle swarm optimizer [C]//IEEE international conference on evolutionary computation, Anchorage: [s. n.],1998.
  • 5Eberhart R, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization [C]//Proceedings of 2000 congress on evolutionary computation, San Diego, CA 2000-84-88.
  • 6Clerc M, Kennedy J. The particle swarm: explosion, stability and convergence in a multi-demensional complex space[J]. IEEE trans, evolut, comput. , 2002,6 (1) : 58-73.
  • 7Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [C]//Proceedings of the 2001 congress on evolutionary computation, Anchorage : [s. n. ],2001.
  • 8Liu Bo, Wang Ling, Jin Yihui, et al. Improve particle swarm optimization combined with chaos[J]. Chaos, solitons and fractacs,2005(25):1 261-1 271.
  • 9Shi X H, Liang Y C, Lee H P, et al. An improved GA and a novel PSO-GA-based hybrid algorithm[J]. Information processing letters, 2005(93) :255-261.
  • 10Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J]. Computers and operations research, 2006 (33): 859 - 871.

二级参考文献8

  • 1Shu-Kai,Fan S, Erwie Zahara. A hybrid simplex search and particle swarm optimization for unconstrained optimization [J]. European journal of operational research, 2007,181 (2) : 527 - 548.
  • 2Nash S G, Sofer A. Linear and nonlinear programming[M]. New York: McGraw-Hill, 1996.
  • 3Powell M J D. An efficient method for finding minimum of function of several variables without calculating derivatives [J]. Computer j. , 1964, (7) :155-162.
  • 4Powell M J D. A new algorithm for unconstrained optimization in nonlinear programming[M]. New York: Academic press, 1970.
  • 5Powell M J D. A fast algorithm for nonlinearly constrained optimiza.tion calculations[M]. New York: Springer-Verlag, 1978.
  • 6Renders J M, Flasse S P. Hybrid methods using genetic algorithms for global optimization[J]. IEEE transaction on systems, man, and cybernetics- part 13: Cybernetics 1996, 26 : 243- 258.
  • 7Yen J, Liao J C, Lee B ,et al. A hybrid approach to modeling metabolic systems using genetic algorithm and simplex method[J]. IEEE transaction on systems, man, and cybernetics- part B: Cybernetics 1998, 28 : 173- 191.
  • 8Van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization[J]. IEEE transaction on evolutionary computation, 2004,8 : 225 - 239.

共引文献4

同被引文献3

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部