期刊文献+

GPS/INS/TAN组合导航系统建模与仿真 被引量:1

The Modelling and Simulation of GPS/INS/TAN Integration Navigation System
下载PDF
导出
摘要 组合导航系统是提高导航系统性能价格比的有效途径,随着信息融合技术的发展,联邦滤波理论由于可以灵活地设计出精度最优或容错能力最强的组合导航系统,已受到导航界的高度重视,在研究分析联邦卡尔曼滤波器的算法和结构特点的基础上,提出一种适用于GPS/INS/TAN组合导航系统工程应用的联邦卡尔曼滤波方案,该方案采用无复位结构既保证了容错能力,又兼顾到了导航精度和运算速度,并对组合导航系统的各分系统、子滤波器及主滤波器进行了数学建模、仿真研究和分析,结果表明:在确保整个组合系统可靠性的前提下,导航精度有了明显提高。 Integrating several kinds of navigation systems together is an effective way to increase the performance cost ratio of the navigation system. With the development of information fusion technology, the federated filtering becomes more and more attractive in navigation field, since the federated Kalman filter can be flexibly used in designing the integrated navigation system with high precision or best fault -tolerance capability. Based on the study and analysis of the algorithm and the characteristic in structure of the federated Kalman filter, a project of GPS/ INS/TAN integration navigation system is presented, in this project the good fault -tolerance can be guaranteed, simultaneously the high precision and the operation tempo can also be taken into consideration. In this paper the mathematic model of GPS/INS/TAN integration navigation system is established, simulated and analyzed. The result indicates that this project is an effective way to improve the precision of navigation.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2009年第1期60-64,共5页 Journal of Air Force Engineering University(Natural Science Edition)
基金 陕西省自然科学基础研究计划资助项目(SJ08F12) 国家自然科学基金资助项目(60273009) 教育部博士点基金资助项目(20050699037)
关键词 联邦滤波 组合导航系统 信息融合 federated filter integration navigation system information fusion
  • 相关文献

参考文献10

  • 1Crassidis J L, Markley F L. Unscented Filtering for Spacecraft Attitude Estimation[ J]. Journal of Guidance, Control and Dynamics, 2003, 26(4) :536 -542.
  • 2Wan E A, van der Merwe R. The Unscented Kalman Filter for Nonlinear Estimation [ C ]//Proc of IEEE Symposium Alberta. Canada:Lake Louise,2000 : 153 - 158.
  • 3Pande Hartana. Comparison of Linearized and Extended Kalman Filter in GPS Aided Inertial Navigation System[ D]. Carleton: Carleton University, 2000.
  • 4Hao Zhang. Using Extended Kalman Filtering(EKF) to Fuse GPS and Inertial Navigation Systems (INS) for Land Vehicle Control[ D]. Regina:University of Regina, 2004.
  • 5Song Z, Chen Z, Fan Y. Self- adjustable Fuzzy Management System of Integrated INS/GPS/TAN [ C ]//Proceedings of the 1996 IEEE 2rid International Conference on Industrial Electronics Control and Instrumentation. Taipei : [ s. n. ], 1996 : 1467 - 1471.
  • 6Blackman S S. Multiple Sensor Data Association and Fusion in Aerospace Application [ J ]. Journal of Robot System, 1994,9 (3) :445 -485.
  • 7Leopeldo J, Longhi S, Venturini G. Development and Experimental Validation of an Adaptive Extended Kalman Filter for Localization of Mobile Robots [ J ]. IEEE Transaction on Robotics and Automation, 1999, 15 (2) :219 -229.
  • 8Kuo R J. Multi - sensor Integrated for On - line Tool Wear Estimation Through Artificial Neural Networks and Fuzzy Neural Network [ J ]. Engineering Application of Artificial Intelligence,2000,13 (3) : 249 - 261.
  • 9Blackman S S, Association and Fusion if Multi - Sensor Data, Multi - target - Multi - sensor Tracking[ M ]. New York: Artech Houle, 1990.
  • 10Rajasekhara V, Sreenatha G. Fuzzy Logic Implementation of Proportional Navigation Guidance[ J ]. Acta Astronautica,2000,46 (1) :17 -24.

同被引文献10

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部