期刊文献+

基于五点分段的一类三角多项式曲线 被引量:1

A Class of Trigonometric Polynomial Curves on Five-Point Piecewise Scheme
下载PDF
导出
摘要 提出了一类新的分段三角多项式曲线,给出了加权三角多项式曲线,表示式结构简单,能用于曲线设计.与四次B样条曲线类似,每段三角多项式曲线由5个控制点生成.对于等距节点,一次和二次三角多项式曲线是C1连续的,三次三角多项式曲线是C3连续的.利用该类分段三角多项式,给出了开曲线和闭曲线的构造方法,并提出了分段三角多项式可精确、灵活地表示椭圆. This paper presents a new class of piecewise trigonometric polynomial curves and a weighted trigonometric polynomial curve which has simple structure and can be used to design curves. Analogous to the four B-spline curves, each curve segment is generated by five consecutive control points. For equidistant knots, the trigonometric polynomial curves of first and second degrees are C^1 continuous, and those of third degree are C^3 continuous. This trigonometric polynomial can be used to construct open and closed curves. Moreover, the class of piecewise trigonometric polynomial curves can be accurate and flexible to express ellipse.
出处 《青岛理工大学学报》 CAS 2009年第1期112-116,共5页 Journal of Qingdao University of Technology
关键词 曲线构造 三角多项式 样条曲线 curve construction trigonometric polynomial spline curve
  • 相关文献

参考文献10

  • 1Piegl L,Tiller M. The NURBS book [M]. Berlin: Springer, 1997: 141-188.
  • 2Pottmann H, Wagner M G.. Helix Splines as an Example of Affine Tchebycheffian Splines[J]. Adv. Comput. Math, 1994,45 (2): 123-142.
  • 3Schoenberg I J . Trigonometric Spline Interpolation [J].J Math. Mech, 1964, 13:795-825.
  • 4朱仁芝,程谟嵩.拟合任意空间曲面的三角函数方法[J].计算机辅助设计与图形学学报,1996,8(2):108-114. 被引量:48
  • 5LU Yong-gang, WANG Guo-zhao. Uniform Triangular Polynomial B-Spline Curves[J]. Science In China (Series E), 2002, 32(2) : 281-288.
  • 6HAN Xu-li. Piecewise Quadratic Trigonometric Polynomial Curves [J]. Mathematics of Computation, 2003,72:1369-1377.
  • 7HAN Xu-li. Quadratic Trigonometric Polynomial Curves with a Shape Parameter [J ]. Computer Aided Geometric Design, 2002, 19 (7) ;497-502.
  • 8HAN Xu-li. Cubic Trigonometric Polynomial Curves with a Shape Parameter[J]. Computer Aided Geometric Design, 2004,21 (6): 535-548.
  • 9Hoschek J, Lasser D. Fundamentals of Computer Aided Geometric Design[M]. Wellesley :Wellesley, MA: A.K. Peters, 1993.
  • 10Holger Rauhut. Random Sampling of Sparse Trigonometric Polynomials[J].Applied and Computational Harmonic Analysis, 2007, 22(1): 16-42.

二级参考文献5

共引文献47

同被引文献11

  • 1吴晓勤.基于三点分段的三角多项式样条曲线[J].工程图学学报,2005,26(2):101-105. 被引量:8
  • 2朱仁芝,程谟嵩.拟合任意空间曲面的三角函数方法[J].计算机辅助设计与图形学学报,1996,8(2):108-114. 被引量:48
  • 3吴晓勤,韩旭里.带参数的二次三角多项式样条曲线[J].工程图学学报,2006,27(1):92-97. 被引量:17
  • 4Piegl L and Tiller M. The NURBS Book. Berlin: Kluwer Press, 1997, 141-188.
  • 5Pottmann H and Wagner M G. Helix splines as an example of affine tchebycheffian splines. i Adv. Comput. Math., 1994, 2: 123-142.
  • 6Schoenberg I J. Trigonometric spline interpolation J. Math. Mech., 1965, 13: 795-825.
  • 7Lu Y G and Wang G Z. Uniform triangular polynomial B-spline curves. Science In China (Series E), 2002, 32(2): 281-288.
  • 8Han X L. Piecewise quadratic trigonometric polynomial curves. Mathematics of Computation, 2003, 72(243): 1369-1377.
  • 9Han X L. Quadratic trigonometric polynomial curves with a shape parameter. Computer Aided Geometric Design, 2002, 19(7): 497-502.
  • 10Han X L. Cubic trigonometric polynomial curves with a shape parameter. Computer Aided Geometric Design, 2004, 21(6): 535-548.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部