摘要
提出了一种新的识别灰度级图像的方法,该方法基于矢量量化的基本思想,通过对图像的分割,将灰度级图像映射成神经元仅取少数几种状态(低态)的Hopfield神经网络模型。理论和模拟实验证明:这种低状态的Hopfield网络模型与传统灰度级图像识别模型相比,不仅神经元的数目较少,互连密度较低,而且网络具有较好的联想能力。
A new kind of graylevel image recognition method is presented. By the image segmentation based on the vector quantization, the graylevel image can be mapped into an Hopfield network, each neuron has several states. The performance of this model is compared with that of the traditionary model. It is concluded that the new one not only has a smaller number of neurons and interconnections, but also has better error correction capabilities.
出处
《光学学报》
EI
CAS
CSCD
北大核心
1998年第1期112-117,共6页
Acta Optica Sinica
基金
国家自然科学基金
关键词
联想存贮
神经网络
灰度级
图像识别
矢量量化
associative memory, neural network, grayimage, vector quantization.