期刊文献+

有界域上带梯度项非线性椭圆型方程的正爆破解

Existence of Positive Explosive Solutions of Nonlinear Elliptic Equations with Gradient Term
下载PDF
导出
摘要 设Ω是RN(N ≥3)中的C2类有界区域,针对变号函数的情形,研究了一类带梯度项的非线性椭圆型方程在Ω上正爆破解的存在性.应用上下解方法并结合二阶椭圆型偏微分方程的内估计理论,得到了正爆破解存在的若干充分性条件,部分推广了原有结果. Let Ω belong to R^N (N ≥ 3) be a C^2 bounded domain, when the gradient term contains coeffcient functions which does not hold the same symbol, the existence of positive explosive solutions of nonlinear elliptic equation in Ω are considered. Some sets of suitable conditions are given by using the explosive super-subsolution method and Schauder inner estimation theory, which guarantee the existence of explosive positive solutions respectively.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期9-12,16,共5页 Journal of Henan Normal University(Natural Science Edition)
关键词 非线性椭圆型方程 梯度项 爆破解 上下解方法 nonlinear elliptic equation gradient term explosive solutions super-subsolutions
  • 相关文献

参考文献8

  • 1Loewner C,Nirenberg L. Partial differential equations invariant under conformal or projective transformations[M]. New York: Academic Press, 1974 : 245- 272.
  • 2Lasry J M,Lions P L. Nonlinear elliptics equations with singular boundary conditions and stochastic control with state constraints[J]. Math Z,1989,283:583-630.
  • 3Zhang Zhijun. Existence of large solutions for a semilinear elliptic problem via explosive sub-supersolutions[J]. J Diff Eq,2006(02) : 1-8.
  • 4Zhang Z. On the existence and asymptotic behavior of explosive solutions for nonlinear elliptic problems with convection terms[J]. Chinese Annals of Math, 2002,23A : 395 - 406.
  • 5Nousair E S,Swanson C A. Positive solutions of quasilinear elliptic equations in exterior domains[J]. J Math Anal Appl,1980,75: 121- 133.
  • 6Sehmitt K. Boundary value problems for quasilinear second order elliptic equations[J]. Nonlinear Anal, 1978,2(3):263-309.
  • 7Ladyzenskaya O A, Uraltreva N N. Linear and quasilinear elliptic equations[M]. New York: Academic Press, 1968.
  • 8Gilbarg D, Trudinger N S. Elliptic partial differential equations of second order[M]. 2nd, Berlin:Springer-Verlag, 1983.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部