期刊文献+

一类多乘积规划问题的对偶界方法 被引量:4

On the Global Optimization for a Class of Sum of Convex-Convex Ratios Problem
下载PDF
导出
摘要 针对一类目标函数和约束函数都是多乘积的规划问题给出一种求其全局最优解的分支定界算法.该算法利用Lagrange对偶理论将其中关键的定界问题转化为一系列易于求解的线性规划,并且这些线性规划的规模固定不变,从而更容易应用到实际问题中.理论分析和数值算例表明提出的算法可行有效. This paper presents a branch and duality bound algorithm for globally solving the sum of convex-convex ratios problem with nonconvex feasible region. The algorithm uses a branch and bound scheme where Lagrangian duality theory is used to obtain the lower bounds. As a result, the lowe-bounding subproblems during the algorithm search are all ordinary linear programs that can be solved very efficiently and that do not grow in size from iteration to iteration. Convergence of the algorithm is proved and some numerical experiments are given to show the feasibility of the proposed algorithm.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期168-170,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(10671057) 河南省科技创新杰出青年基金
关键词 全局优化 比式和 分支定界 对偶界 global optimization sum of ratios branch and bound duality bound
  • 相关文献

参考文献4

二级参考文献10

  • 1Benson H P.On the global optimization of sums of linear fractional functions over a convex set[J].Journal of Optimization Theory and Applications,2004,121:19-39.
  • 2Benson H P.Global optimization algorithm for the nonlinear sum of ratios problem[J].Journal of Optimization Theory and Applications,2002,112:1-29.
  • 3Benson H P.Using concave envelopes to globally solve the nonlinear sum of ratios problem[J].Journal of Global Optimization,2002,22:343-364.
  • 4Wang Y J,Zhang K C.Global optimization of nonlinear sum of ratios Problem[J].Applied Mathematics and Computation,2004,158:319-330.
  • 5Shen P P,Zhang K C.Global optimization of signomial geometric programming using linear relaxation[J].Applied Mathematics and Computation,2004,15:99-114.
  • 6Nataray P S V,Kotecha K.An algorithm for global optimization using the Taylor-Bernstein form as inclusion function[J].Journal of Global Optimization,2002,24:417-436.
  • 7Ryoo H S,Sahinidis N V.Global optimization of multiplicative programs[J].Journal of Global Optimization,2003,26:387-418.
  • 8Benson H P,Boger G M.An outcome space cutting plane algorithm for linear multiplicative programming[J].Journal of Optimization Theory and Applications,2000,104:301-322.
  • 9Kuno T,Konno H,Irie A.A deterministic approach to linear programs with Several Additional Mutiplicative Constraints[J].Computational Optimization and applications,1999,14:347-366.
  • 10Benson H P.Decomposition branch-and-bound based algorithm for linear programs with addtional multiplicative constraints[J].Journal of Optimization Theory and Application,2005,126:41-61.

共引文献3

同被引文献26

  • 1MARANAS C D, ANDROULAKIS I P, FLOUDAS C A, et al. Solving longterm financial planning problems via global optimization [ J ]. Journal of Economic Dynamics and Control, 1997,21 : 1405 - 1425.
  • 2KONNO H, WATANABE H. Bond portfolio optimization problems and their application to index tracking: a partial optimization approach [ J ]. Journal of Operations Research Society of Japan, 1996,39:285 - 306.
  • 3DORNEICH M C, SAHINIDIS N V. Global optimization algorithms for chip design and compaction[ J]. Engineering Optimization, 1995,25 (2) : 131 - 154.
  • 4BENSON H P. Vectory maximization with two objective functions[J]. Journal of Optimization Theory and Applications,1979,28:253 -257.
  • 5KUNO T. Globally determining a minimun-aera rectangle enclosing the projection of a higer dinmensional [ J]. Set, Operations Research Letters, 1993, 13:295 -303.
  • 6BENNETF K P, MANGASARIAN O L. Bilinear separation of two sets in n-space[ J]. Computational Optimization and Application, 1994 (2) :207 - 227.
  • 7SCHAIBLE S, SODINI C. Finite algorithm for generalized linear multplicative programming[ J]. Journal of Optimization Theory and Applications, 1995,87(2) :441 -455.
  • 8KUNO T, YAJIMA Y, KONNO H. An outer apprroximation method for minmizing the product of sereral convex functions on a convex set[ J]. Jour- nal of Global optimization, 1993,3 ( 3 ) : 325 - 335.
  • 9BENSON H P. Decomposition branch and bound based algorithm for linear programs with additional multiplicative constraints[ J]. Journal of Opti- mization Theory and Applications,2005,126 (1) :41 -46.
  • 10KUNO T. A finite branch and bound algorithm for generalized linear multplicative programming[ J]. Computational Optimization and Application, 2001,20 : 119 - 135.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部