期刊文献+

频率双向渐进优化方法中新的插值技术 被引量:2

New extrapolation technology in bidirectional frequency evolutionary structural optimization method
下载PDF
导出
摘要 研究了拓扑结构优化中的插值技术。针对传统的频率双向渐进优化方法所采取的代数外插方式只能用于规则的矩形单元或长方体单元的情形,根据当前结构的主振型,建立静力平衡方程组,从而计算出边界单元新增加结点的模态位移。这种插值技术可以将双向渐进优化方法推广运用于任意形状的单元。仿真算例表明,该方法有效可行。 The extrapolation technology in structural topology optimization was discussed.In view of that the traditional extrapolation method in bidirectional evolutionary structural optimization method can only be applied in the case of regular rectangle element or cuboidal element,a novel extrapolation approach based on a new idea was presented.After the normal modes analysis,according to the known displacements of the nodes in the intra-domain,unknown displacements of the nodes on the boundaries of the structure will be calculated by linear static method.The method can be popularized on arbitrarily elements.The example demonstrates the effectiveness of the method proposed.
作者 刘亚萌 王皓
出处 《振动与冲击》 EI CSCD 北大核心 2009年第2期68-71,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(批准号:10672041)
关键词 结构拓扑优化 渐近结构拓扑优化 双向渐近结构拓扑优化 边界单元 structural topology optimization evolutionary structural optimization bidirectional evolutionary structural optimization method boundary element
  • 相关文献

参考文献6

  • 1Tanskanen P. The evolutionary structural optimization method: theoretical Aspects [J]. Comput. Methods Appl. Mech. Engrg., 2002, 191:5485-5498.
  • 2Xie Y M, Steven G P. Optimal design of multiple load case structures using an evolutionary procedure [J]. Eng. Comput., 1994, 11:295-302.
  • 3Xie Y M, Steven G P. Evolutionary structural optimization for dynamic problems [J]. Computers & Structures, 1996, 58 (6) : 1067 - 1073.
  • 4Yang X Y. Bi-direetional evolutionary method for stiffness and displacement optimization [D]. ME thesis, school of the Built Environment, Victoria University of Technology, Victoria, Australia, 1999.
  • 5Querin O M, Young V, Steven G P, et al. Computational efficiency and validation of bi-dlreetional evolutionary structural optimization [J]. Comput. Methods Appl. Mech. Engrg., 2000, 189:559-573.
  • 6Yang X Y, Xie Y M, Steven G P, et al. Topology optimization for frequencies using an evolutionary method [J]. JOURNAL OF STRUCTURAL ENGINEERING, 1999, 125 (12) : 1432 - 1438.

同被引文献15

  • 1龚奇伟,张李超,莫健华.STL模型自动镂空的算法与应用[J].计算机辅助设计与图形学学报,2007,19(1):54-58. 被引量:7
  • 2王伟.机翼结构拓扑优化的一种新渐进结构优化方法[J].飞机设计,2007,27(4):17-20. 被引量:8
  • 3Li Q, Steven G P, Xie Y M. Evolutionary structural optimization for stress minimization problems by dis- crete thickness design [J].Computers & Structures, 2000, 78 (6): 769-780.
  • 4Querin O M, Young V, Steven G P, et al. Computa- tional efficiency and validation of hi-directional evolu- tionary structural optimization [J]. Computer Meth- ods in Applied Mechanics and Engineering, 2000, 189 (2) : 559-573.
  • 5Huang X, Xie Y M. Evolutionary topology optimiza- tion of continuum structures including design-depend- ent self-weight loads [J]. Finite Elements in Analysis and Design, 2011, 47(8):942-948.
  • 6Lagaros N D, Charmpis D C, Papadrakakis M. An a- daptive neural network strategy for improving the computational performance of evolutionary structural optimization[J]. Computer Methods in Applied Me- chanics and Engineering, 2005, 194(30-33): 559- 573.
  • 7Xie Y M, Steven G P. Evolutionary structural optimi- zation for dynamic problems [J]. Computers & Struc- tures, 2002, 58(6): 1 067-1 073.
  • 8Huang X, Zuo Z H, Xie Y M. Evolutionary topologi- cal optimization of vibrating continuum structures for natural frequencies [J]. Computers & Structures, 2010, 88(5-6) :357-364.
  • 9Haiba M, Barton D C, Brooks P C, et al. Evolution- ary structural optimization of dynamically loaded com- ponents in consideration of fatigue life [J]. Advances in Engineering Software, 2005,36(1) :49-57.
  • 10Ghaffarianjam H R, Abolbashari M H, Farshidianfar A. Quantitative verification of the morphing evolution- ary structural optimization method for some bench- mark problems using a new performance index [J]. Scientia Iranica, 2011, 18(3): 383-392.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部