期刊文献+

改进NLPM-ANN模型在径流预报中的应用 被引量:2

A modified NLPM-ANN model and its application to flood forecasting
原文传递
导出
摘要 基于人工神经网络的非线性扰动模型(NLPM-ANN)充分利用了LPM的季节信息处理方法和ANN强大的非线性模拟性能.然而该模型没有考虑流域的前期土壤湿度状态,影响了模型的模拟预报精度.为了将流域的前期土湿加入模型,同时能更加充分利用降水信息,采取一种将LPM与ANN结合起来的联合预报模式.选用8个流域的降雨径流资料,对改进的NLPM-ANN模型与SLM-ANN和NLPM-ANN模型进行比较研究.计算结果表明,改进的NLPM-ANN模型优于SLM-ANN模型和NLPM-ANN,在率定期和检验期的模型效率相对增值指数较NLPM-ANN提高10%左右. NLPM-ANN model takes advantage of the consideration of seasonal information by LPM and the notable nonlinear simulation capability of ANN. However, that this model does not take account of antecedent catchment wetness and the use of rainfall information is not enough; and it effects the simulation and forecasting accuracy. To take the consideration of antecedent catchment wetness and use of more rainfall information, a modified NLPM-ANN model is proposed to couple LPM and ANN together. The rainfall-runoff data of eight catchments are selected and used to compare the modified NLPM-ANN with SLM- ANN and NLPM-ANN models. Results show that the modified NLPM-ANN model performs much better than NLPM-ANN and SLM-ANN. The model component efficiency index of the modified model is about 10% over NLPM-ANN during calibration and verification period.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2009年第1期1-5,共5页 Engineering Journal of Wuhan University
基金 国家自然科学基金项目(编号:50679063) 国际科技合作项目(编号:2005DFA20520)
关键词 人工神经网络 BP算法 径流预报 NLPM—ANN SLM—ANN模型 artificial neural networks back propagation algorithm flood forecasting NLPM-ANN SLM- ANN
  • 相关文献

参考文献9

  • 1罗晓曙.人工神经网络理论[M].桂林:广西师范大学出版社,2005.
  • 2Kachroo R K, Liang G C. River flow forecasting, part 2, algebraic development of linear modelling techniques [J]. Journal of Hydrology, 1992,133:17-40.
  • 3Liang G C, Nash J E. Linear models for river flow routing on large catchments[J]. Journal of Hydrology, 1988,103 : 157-188.
  • 4Luk K C, Ball J E, Sharma A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting [J]. Journal of Hydrology, 2000,227:56-65.
  • 5占玉林,王新明,王长耀,牛铮.线性响应模型与神经网络联合模拟降雨~径流过程[J].水力发电学报,2006,25(2):60-64. 被引量:2
  • 6Salas J D, Markus M, Tokar A A. Streamflow forecasting based on artificial neural networks “in Artificial Neural Networks” in Hydrology [M]. edited by Gaovindraju R S, Rao A R. Kluwer Academic Publishers, 2000 : 23-51.
  • 7Pang B, Guo S L, Xiong L H, LiC Q. A nonlinear perturbation model based on artificial neural network [J]. Journal of Hydrology, 2007,333 : 504-516.
  • 8Minns A W, Hall M J. Artificial neural networks as rainfall-runoff models [J]. Hydrological Science Journal, 1996,41:399-417.
  • 9Campolo M, Andreussi P, Soldati A. River flow forecasting with a neural network model [J]. Water Resources Research, 1999,35 : 1191-1197.

二级参考文献10

  • 1Karunanithi N,Grenney W J,Whitley D Bovee K.Neural networks for river flow prediction[J].Comp.Civ.Engng,ASCE,1994,8 (2):201 ~ 220.
  • 2Campolo M,Andreussi P,Soldati A.River flood forecasting with a neural network model.Water Resour[J].Res.1999,35(4):1191 ~ 1197.
  • 3Imrie C E,Durucan S,Korre A.River flow prediction using artificial neural networks:generalization beyond the calibration range[J].Hydrol.2000,33,138 ~ 153.
  • 4Halff A H,Halff H M,Azmoodeh M.Predicting runoff from rainfall using neural networks[J].Proc.Engng.Hydrol.,ASCE,New York,1993,768 ~ 775.
  • 5Liang G C,Nash J E.Linear models for river flow routing on large catchments[J].Hydrol.1988,(103):153 ~ 188.
  • 6Bruen M,Dooge J C I.An efficient and robust method of estimating unit hydrograph ordinates[J].Hydrol.1984,(70):1 ~ 24.
  • 7Amorocho J.Nonlinear Hydrologic Analysis.Advances in Hydrosciences[J].Academic Press,New York,1973,9:203 ~ 251.
  • 8Liang G C,O'Connor K M,Kachroo R K.A multiple input single output variable gainfactor model[J].Hydrol.1994,115:185 ~ 198.
  • 9Rajurkar M P,Kothyari U C,Chaube U C.Artificial neural network for daily rainfall-runoff modeling[J].Hydrol.Sci.J.2002,47 (6):865 ~ 877.
  • 10Muftuoglu R F.Monthly runoff generation by nonlinear models[J].Hydrol.1991,125:277 ~ 291.

共引文献12

同被引文献16

引证文献2

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部