期刊文献+

瑞利粒子在贝塞尔光束中的横向受力 被引量:1

Transverse trapping force on a Rayleigh particle in Bessel beam
下载PDF
导出
摘要 为寻找捕获瑞利粒子的最佳光场,利用电磁模型推导了贝塞尔光束捕获粒子的最小半径的表达式,并数值计算了瑞利粒子在贝塞尔光束和高斯光束中所受的横向力和势阱的深度。结果表明:当激光功率为4 W时,贝塞尔光束仅能在光轴处稳定地捕获瑞利粒子;当激光功率达到6 W时,贝塞尔光束能够在光轴和次极大位置捕获瑞利粒子。在相同的激光参数条件下,高斯光束无法克服布朗运动的影响稳定地捕获瑞利粒子,贝塞尔光束更有利于捕获瑞利粒子。 In order to obtain the most suitable optical fields to trap the Rayleigh particles, the expression of the minimum particle radius for Bessel beams capture was deduct through the electromagnetism model, and transverse forces and potential depths were calculated for Rayleigh particles in Bessel and Gaussian beams respectively. The results indicate that Rayleigh particles can be stably trapped under an incident power of 4 W only at the maximum of the optical fields, and the positions of trapping particles in the optical fields are the maximum and the secondary maximum for an incident power of 6 W. With similar laser parameters, Gaussian beams can not overtake the influences of Brownian motion to capture the Rayleigh-particles as Bessel beams do. Therefore, Bessel beams are better to trap the Rayleigh particles.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2009年第1期135-138,共4页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(60678027)
关键词 光学捕获 瑞利粒子 横向力 贝塞尔光束 optical trapping Rayleigh particle transverse forces Bessel beam
  • 相关文献

参考文献9

  • 1Asbkin A, Dziedzie J M, Bjorkbolm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Opt Lett, 1986, 11(5) :288-290.
  • 2Ashkin A. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules[J]. IEEEJ Sel Top Quantum Electron, 2000, 6(6) :841-856.
  • 3Siler M, Zemanek P. Optical forces acting on a nanoparticle placed into an interference evanescent field[J]. Opt Commun, 2007, 275:409- 420.
  • 4Visscher K, Brakenhoff G J. A theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatters[J].Optik, 1992, 89:174-180.
  • 5Chaumet P C, Nieto-Vesperinas M. Time-averaged total force on a dipolar sphere in an electromagnetic field[J]. Opt Lett, 2000, 25(15): 1065-1067.
  • 6Neuman K C, Block S M. Optical trapping[J]. Rev Sci Instrum, 2004, 7S(9) :2787-2809.
  • 7Harada Y, Asakura T. Radiation forces on a dielectric sphere in the Rayieigh scattering regime[J]. Opt Commun, 1996, 124:529-541.
  • 8Milne G, Dholakia K, MeGloin D, et al. Transverse particle dynamics in a Bessel beam[J]. Optics Express, 2007, 15(21) :13972-13987.
  • 9Arlt J, Dholakia K, Soneson J, et al. Optical dipole traps and atomic waveguides based on Bessel light beams[J]. PhysRev A, 2001, 63: 063602.

同被引文献13

  • 1Durnin J, Miceli J J, Eberly J. Diffraction free beams[J]. Phys Rev Lett, 1987,58(15) :1499-1501.
  • 2Fahrbach F O, Simon P, Rohrbach A. Microscopy with self reconstructing beams[J].Nature Photonics, 2010, 204:1 6.
  • 3Rogel-Salazar J, New G H C, Chdvez Cerda S. Bessel Gauss beam optical resonator[J]. Opt Commun, 2001, 190(1) :117 122.
  • 4Litvin I A, Nhilo N A, Forbes A, et al. Intra-cavity generation of Bessel-like beams with longitudinally dependent cone angles[J]. Opt Ezpress, 2010, 18(5) :4701- 4708.
  • 5Turunen J, Vasara A, Friberg AT. Holographic generation of diffraction free beams[J]. ApplOpt, 1998, 27(19) :8959-3962.
  • 6Mcleod J H. Axicons and their uses[J].J Opt Soc Am, 1960, 50(2) :166 -166.
  • 7Burvall A, Kolacz K, Jaroszewicz Z, et al. Simple lens axicon[J]. Appt Opt ,2004, 43(25):4838-4844.
  • 8Chdvez-Cerda S, McDonald G S, New G H C. Nondiffracting beams, travelling, standing, rotating and spiral waves[J]. Opt Commun, 1996, 123.-225 233.
  • 9Litvin I A, McLaren M G, Forbes A. A conical wave approach to calculating gessel Gauss beam reconstruction after complex obstacles [J]. Opt Commun, 2009, 282(6): 1078-1082.
  • 10卢文和,吴逢铁,郑维涛.透镜轴棱锥产生近似无衍射贝塞尔光束[J].光学学报,2010,30(6):1618-1621. 被引量:18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部