期刊文献+

解非线性方程组的一个改进牛顿法 被引量:3

A Modify Iterative Method for System of Nonlinear Equations
下载PDF
导出
摘要 针对牛顿法公式的局限性,利用非线性方程组F(x)=0的一个同解方程组的牛顿法公式,构造了求解非线性方程组F(x)=0的一个迭代法公式,牛顿法迭代公式是其特例,并讨论了其收敛性,通过算例说明了算法的有效性. Aiming at the limitation of Newton iterative formula, using Newton iterative method for system of nonlinear equations, new iterative method for solving system of nonlinear equations is constructed in this paper. Newton iterative method is a special case of this method,the convergence is presented and the numerical results are given to illustrate the efficiency of this methods.
出处 《甘肃联合大学学报(自然科学版)》 2009年第1期116-117,125,共3页 Journal of Gansu Lianhe University :Natural Sciences
关键词 非线性方程组 迭代法 牛顿迭代公式 收敛性 system of nonlinear equations iterative method Newton iterative formula convergence
  • 相关文献

参考文献4

二级参考文献11

  • 1[2]CORDER A,JUAN R.Torregrosa,Variants of Newton's method for functions of several variables[J].Appl Math Comput,2006,183:199-208.
  • 2[3]CHUN C.Iterative methods improving Newton's method by the decomposition method[J].Appl Math Comput,2006,178(2):415-422.
  • 3[4]JUERGEN G.Accelerated convergence in newdon's method[J].SIAM Review,1994,36(2):272-276.
  • 4[5]INNAYAT N M.ASLAM N B.Predictor-corrector Hally methods for nonlinear equations[J].Appl Math Comput,2006(11):23.
  • 5[6]HE J H.Variational iteration method some recent results and new interpretations[J].Comput Appl Math,2006(10):9.
  • 6KANTOROVICH L V,AKILOV G P.Functional Analysis[M].New York:Pergamon Press,1982.
  • 7ORTEGA J M,RHEINBOLT W C.Iteration Solution of Nonlinear Equations in Several Variables[M].New York:Academic Press,1970.
  • 8WANG Xing-hua.Convergence of Newton's method and uniqueness of the solution of equations in Banach space[J].IMA J of Numerical Analysis,2000,20:123-134.
  • 9WANG Xing-hua.Convergence of Newton's method and inverse function in Banach space[J].Math Comput,1999,68:169-186.
  • 10吴新元.对牛顿迭代法的一个重要修改[J].应用数学和力学,1999,20(8):863-866. 被引量:56

共引文献5

同被引文献25

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部