期刊文献+

矩阵特征值的新扰动界 被引量:3

A New Perturbation Bound for the Eigenvalues of a Positive Semi-definite Matrix
下载PDF
导出
摘要 在早期Hermitetian正定矩阵的研究结果的基础上,结合群逆和矩阵的分块,分析了Hermitian半正定矩阵的Weyl型相对扰动界,给出了相应的结果,从而得到一类矩阵特征值的新的扰动界. Based on the early research on Hermitetian positive definite matrix and combined with the group inverse and block matrix, this paper analyzes Weyl-type relative perturbation bound of Hermitetian positive semi-definite matrices and presents the responding results. So the new perturbation bounds of eigenvalues of a kind of matrix are obtained.
作者 张娜 宋丽娟
出处 《重庆工学院学报(自然科学版)》 2009年第2期82-85,共4页 Journal of Chongqing Institute of Technology
关键词 谱范数 群逆 扰动 spectrum norm group inverse perturbation
  • 相关文献

参考文献2

二级参考文献13

  • 1Eisenstat G, Ilse G F Ipsen. Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds. SIAM J. Matrix Anal. Appl., 1998, 20(1): 149=-.158.
  • 2Elsener L, Friedland S. Singular Values, Doubly Stochastic Matrices and Applications. Linear Algebra Appl., 1995, 220:161-169.
  • 3Li R C. Relative Perturbation Theory (I): Eigenvalue and Singular Value Variations. SIAM J. Matrix Anal. Appl., 1998, 19:956-982.
  • 4Li R C. Relative Perturbation Theory (Ⅰ); Eigenvalue Variations. LAPACK working note 84, Computer Science Department, University of Tennessee, Knoxville, Revised May, 1997.
  • 5Horn R A, Johson C R. Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991.
  • 6Ilse C F Ipsen. Relative Perturbation Results for Matrix Eigenvalues and Singular Values. Acta Numerica, 1998:151-201.
  • 7Zhang Z. On the Perturbation of Eigenvalues of a Non-defective Matrix. Math. Numer. Sinica, 1986,6(1): 106-108.
  • 8Li R C. Norms of certain matrices with applications to variations of the spectra of matrices and matrix pencils[J].Linear Algebra Appl, 1993 , 182:199 - 234.
  • 9Li R C. Relative perturbation theory: I eigenvalue and sigular value variations[ J ]. SIAM J Matrix Anal Appl,1998 , 19(4) :956 - 982.
  • 10Li R C. Relative perturbation theory: (I) eigenvalue variations[J]. Lapack working note 84, Computer Science Department, University of Tennessee, Knoxville, Revised May, 1997.

共引文献11

同被引文献29

  • 1余世群.关于“一类矩阵秩的恒等式及其推广”一文的注记[J].武汉科技学院学报,2006,19(10):28-29. 被引量:9
  • 2王廷明,黎伯堂.一类矩阵秩恒等式的证明[J].山东大学学报(理学版),2007,42(2):43-45. 被引量:16
  • 3MARSAGLIAG, STYAN G P H. Equalities and inequalities for ranks of matrices [ J ]. Linear and Multilinear Algebra, 1974 (2) :269 - 292.
  • 4FROBENIUS G. Sitzungsberichte der Koeniglich Preussischen Akademie de Wissenschaften zn Berlin, 1911 : 20 - 29. 128 - 129.
  • 5ROTH R E. The equations AX - Y B = C and AX - XB = C in matrices[ J]. Proc. Amer. Math. Soc. A, 1952, 3:392 - 396.
  • 6TIAN Y, STYAN G PH. When does rank(ABC) = rank (AB) + rank(BC) rank(B) hold? [J]. Internat. J. Math. Ed. Sci. Teehnol, 2002, 33:127 - 137.
  • 7Gene H G.矩阵计算[M].北京:人民邮电出版社,2009.
  • 8陆金甫.数值线性代数[M].北京:人民邮电出版社,2006.
  • 9Ryckman E. A spectral equivalence for Jacobi matrices [ J ]. Journal of Approximation Theory, 2007, 146 : 252 - 266.
  • 10Gusein S G. An inverse spectral problem for complex Jacobi matrices[ J]. Commun Nonlinear Sci Numer Simulat,2010,15:840 - 851.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部