期刊文献+

Banach空间中有界线性算子的Moore-Penrose度量广义逆的扰动分析 被引量:1

PERTURBATION ANALYSIS FOR MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS IN BANACH SPACE
下载PDF
导出
摘要 对度量广义逆中Moore-Penrose度量广义逆的扰动进行了初步的研究.给出了度量稳定扰动的定义,应用度量稳定扰动的定义及广义正交分解定理给出在一定的范数下,有界线性算子的单值度量广义逆Moore-Penrose度量广义逆的误差界估计. In this paper, we have carried on the preliminary inquisition to perturbation analysis for Moore -Penrose metric generalized inverse of bounded linear operators in Banach space. In here, we have given the definition of stable perturbation, and then we apply this definition and generalized orthogonal decomposition theorem to give under certain norm Moore -Penrose metric generalized inverse error bound estimate.
机构地区 哈尔滨师范大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2008年第6期1-3,11,共4页 Natural Science Journal of Harbin Normal University
基金 国家自然科学基金资助项目(10671049) 黑龙江省教育厅科学技术资助项目(11531248)
关键词 BANACH空间 度量广义逆 扰动 Banach Space Metric Generalized Inverse Perturbation
  • 相关文献

参考文献11

  • 1Stewart. G.W. On the continuity of the gneralized inverse [J]. SIAMJ Appl Math., 1976,17:33 -45.
  • 2Stewart. G. W. On the pertyrbation of pseudo - inverse: Projections and Linear Least squares problems [ J ]. SIAM Review, 1977,19:622 - 634.
  • 3Wedin. P. A. Perturbation theory for pseudo - inverse [ J ]. BIT, 1973, 13:217-232.
  • 4王国荣.加权Moore-Penrose逆的扰动理论[J].应用数学与计算数学学报,1987,1:48-60.
  • 5Guanghao Rong. The error bound of the perturbation the Drazin invent[J]. Linear Algebra and its Appl., 1982, 47:159 -468.
  • 6Wang Guorong, Wei Yimin. Perturbation theory for the Bott - Duffin inverse and its applicatoins[J]. J Shanghai Normal University, 1993, 22(4) : 1 -6.
  • 7Liu Guoming, Chen Guoliang. Perturbatin for the generalized Boa- Duffin inverse [ J ]. J East China Normal University, 2000, 1:1 -6.
  • 8M. Z. Nashed . Generalized Inverse and Applications. New York/London, 1976.
  • 9王玉文.巴拿赫空间中算子广义逆理论及其应用.现代数学基础丛书94.北京:科学出版社,2005
  • 10马海凤,王玉文.单值度量广义逆的扰动分析[J].哈尔滨师范大学自然科学学报,2006,22(2):8-10. 被引量:3

二级参考文献4

  • 1Chen Guoliang,Xue Yifeng.Pertubation Analysis for the Operator Equation Tx = b in Banach Spaces.Journal of Mathematical Analysis and Application,1997,212:107 ~ 125.
  • 2张恭庆,林源渠.泛函数分析讲义.北京:北京大学出版社,2003.
  • 3Tosio Kato.Pertubation Theory for Linear Operators.Springer -Verlag.Berlin Heidel berg.New York.1980.
  • 4M.Z.Nashed,Ed.Generralized Inverse and Applications.New York/London Academic Press.1976.

共引文献4

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部