期刊文献+

木糖还原酶定点突变设计的生物信息学分析 被引量:1

Bioinformatic Analysis of Xylose Reductase for Site-Directed Mutagenesis
下载PDF
导出
摘要 木糖代谢过程中,木糖还原酶(XR)和木糖醇脱氢酶(XDH)的氧化还原不平衡是利用纤维素生成酒精的关键问题之一.文中借助生物信息学手段(同源建模、酶和辅酶分子对接),通过分析数据库资源,找到了一些影响XR活性或辅酶依赖性的关键氨基酸.结果表明:树干毕赤氏酵母XR与烟酰胺腺嘌呤二核苷酸磷酸(NADP)之间形成氢键的氨基酸有Lys21、Val222、Glu223、Phe236和Thr273,与烟酰胺腺嘌呤二核苷酸(NAD)之间形成氢键的氨基酸有Val222、Glu223、Phe236、Glu237和Thr273;突变Lys21(完全保守)使树干毕赤氏酵母XR只与辅酶NAD结合,突变Glu237(不完全保守)使树干毕赤氏酵母XR只与辅酶NADP结合;热带假丝酵母XR与NADP之间形成氢键的氨基酸有Asn278和Arg282(两者都不完全保守),要改变其NADP依赖性,可以替代Asn278和/或Arg282. One of the key problems affecting the ethanol production from cellulose is the unbalanced redox between xylose reductase (XR) and xylitol dehydrogenase (XDH) in the xylose metabolic process. In this paper, some key amino acids that affect the activity or coenzyme specificity of XR are identified based on the database sources by using the bioinformatic methods such as the homology modeling and the molecular docking. The results indicate that (1) amino acids Lys21, Va1222, Glu223, Phe236 and Thr273 in Pichia stipitis XR have hydrogen bonding with nicotinamide adenine dinucleotide phosphate (NADP), while amino acids Va1222, Glu223, Phe236, Glu237 and Thr273 have hydrogen bonding with nicotinamide adenine dinucleotide (NAD) ; (2) the mutagenesis of Lys21 (conserved) is likely to result in the binding of Pichia stipitis XR with NAD only, while that of Glu237 ( not conserved) is likely to result in the binding with NADP only; (3) unconserved amino acids Asn278 and Arg282 in Candida tropicalis XR have hydrogen bonding with NADP; and (4) the mutagenesis of Ash278 or/and Arg282 is likely to result in the unbinding of Candida tropicalis XR from NADP.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第12期122-127,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省自然科学基金资助项目(063001990)
关键词 木糖还原酶 定点突变 同源建模 分子对接 辅酶 生物信息学 xylose reductase site-directed mutagenesis homology modeling molecular docking coenzyme bioinformation
  • 相关文献

参考文献18

  • 1Salusjarvi L, Poutanen M, Pitkanen J P, et al. Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae [J]. Yeast,2003,20(4) :295-314.
  • 2de Castro H F, Oliveira S C, Furlan S A. Alternative approach for utilization of pentose stream from sugarcane bagasse by an induced flocculent Pichia stipitis [ J ]. Appl Biochem Biotechnol,2003 ,105/106/107/108 :547-555.
  • 3Eliasson A, Christensson C, Wahlbom C F, et al. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures [ J ]. Appl Environ Microbiol, 2000,66( 8 ) :3 381-3 386.
  • 4Verho R, Londesborough J, Penttila M, et al. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae [ J ]. Appl Environ Microbiol,2003,69 (10) : 5 892-5 897.
  • 5Jeffries T W, Jin Y S. Metabolic engineering for improved fermentation of pentoses by yeasts [ J ]. Appl Microbiol Biotechnol,2004,63 (5) :495-509.
  • 6Pitkanen J P, Aristidou A, Salusjarvi L, et al. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture [ J ]. Metab Eng,2003,5 ( 1 ) :16-31.
  • 7Petschacher B, Leitgeb S, Kavanagh K L, et al. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography [ J]. Biochem J,2005,385:75-83.
  • 8Kratzer R, Leitgeb S, Wilson D K, et al. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis [ J ]. Biochem J,2006,393:51-58.
  • 9Jeppsson M, Bengtsson O, Franke K, et al. The expression of a Pichia stipitis xylose reductase mutant with higher K (M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae [ J ]. Biotechnol Bioeng,2006,93(4) :665-673.
  • 10Petschacher B, Nidetzky B. Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions [ J ]. Appl Environ Microbiol, 2005,71 (10) :6390-6393.

同被引文献27

  • 1贺东海,赵光辉,聂圣才.木糖的功能特性及应用[J].中国食物与营养,2006,12(2):27-28. 被引量:11
  • 2阴春梅,刘忠.发酵法制备木糖醇的研究进展[J].杭州化工,2007,37(3):15-17. 被引量:2
  • 3Anu Saloheimo,Jenita Rauta,Oleh V. Stasyk,Andrei A. Sibirny,Merja Penttil?,Laura Ruohonen.Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases[J]. Applied Microbiology and Biotechnology . 2007 (5)
  • 4Luis F. Figueiredo Faria,Maria Antonieta P. Gimenes,Ronaldo Nobrega,Nei Pereira.Influence of oxygen availability on cell growth and xylitol production by Candida guilliermondii[J]. Applied Biochemistry and Biotechnology . 2002 (1-9)
  • 5Peter M. Bruinenberg,Peter H. M. Bot,Johannes P. Dijken,W. Alexander Scheffers.The role of redox balances in the anaerobic fermentation of xylose by yeasts[J]. European Journal of Applied Microbiology and Biotechnology . 1983 (5)
  • 6Yokoyama,S,Kinoshita,Y,Suzukl,T.et al.Cloningand sequeneing of two D-xylose reductase genes (xylA andxylB)fom Candidatropicalis. Femrent.Bioeng . 1995
  • 7Wang T.H,Zhong Y.H,Huang W.et al.Antisenseinhibition of xylitol dehydrogenase gene,xdh1 fromTrichoderma reesei. Letters in Applied Microbiology . 2005
  • 8Reza Khankal,Jonathan WChin,Patrick C.Cirino.Role of xylose transporters in xylitol production fromengineered Escherichia coli. Journal of Biotechnology . 2008
  • 9Yong Sung Kim,Jung Hoe Kim.Xylitol production usingrecombinant Saccharomyces cerevisiae containing multiplexylose reductase genes at chromosomalδ-sequence. Journal of Biotechnology . 1999
  • 10Antti Nyyssola,Anne Pihlajaniemi,Airi Palva.Productionof xylitol from D-xylose by recombinant Lactococcuslactis. Journal of Biotechnology . 2005

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部