摘要
Objective To evaluate the effect of white rot fungus Phanerochaete chrysosporium on removal of gaseous chlorobenzene. Methods Fungal mycelium mixed with a liquid medium was placed into airtight bottles. A certain amount of chlorobenzene was injected into the headspace of the bottles under different conditions. At a certain interval, the concentrations in the headspace were analyzed to evaluate the degradation of chlorobenzene by P. chrysosporium. Results The degradation effects of P. chrysosporium on chlorobenzene under different conditions were investigated. The difference in the optimum temperature for the growth of the fungi and chlorobenzene degradation was observed. The data indicated that a lower temperature (28℃) would promote the degradation of chlorobenzene than the optimum temperature for the growth of the fungi (37℃). A low nitrogen source concentration (30 mg N/L) had a better effect on degrading chlorobenzene than a high nitrogen source concentration (higher than 100 mg N/L). A high initial concentration (over 1100 mg/m3) of chlorobenzene showed an inhibiting effect on degradation by P chrysosporium. A maximum removal efficiency of 95% was achieved at the initial concentration of 550 mg/m3. Conclusion P. chrysosporium has a rather good ability to remove gaseous chlorobeuzene. A low nitrogen source concentration and a low temperature promote the removal of chlorobenzene by P. chrysosporium. However, a high initial chlorobenzene concentration can inhibit chlorobenzene degradation.
Objective To evaluate the effect of white rot fungus Phanerochaete chrysosporium on removal of gaseous chlorobenzene. Methods Fungal mycelium mixed with a liquid medium was placed into airtight bottles. A certain amount of chlorobenzene was injected into the headspace of the bottles under different conditions. At a certain interval, the concentrations in the headspace were analyzed to evaluate the degradation of chlorobenzene by P. chrysosporium. Results The degradation effects of P. chrysosporium on chlorobenzene under different conditions were investigated. The difference in the optimum temperature for the growth of the fungi and chlorobenzene degradation was observed. The data indicated that a lower temperature (28℃) would promote the degradation of chlorobenzene than the optimum temperature for the growth of the fungi (37℃). A low nitrogen source concentration (30 mg N/L) had a better effect on degrading chlorobenzene than a high nitrogen source concentration (higher than 100 mg N/L). A high initial concentration (over 1100 mg/m3) of chlorobenzene showed an inhibiting effect on degradation by P chrysosporium. A maximum removal efficiency of 95% was achieved at the initial concentration of 550 mg/m3. Conclusion P. chrysosporium has a rather good ability to remove gaseous chlorobeuzene. A low nitrogen source concentration and a low temperature promote the removal of chlorobenzene by P. chrysosporium. However, a high initial chlorobenzene concentration can inhibit chlorobenzene degradation.
基金
supported by the Hi-tech Research and Development Program of China (2004AA601061).